Surgeons may soon be able to regrow patients’ nerves, such as those in damaged spinal cords, using technology adapted from the type of inkjet printer most of us have connected to our computer at home.
Researchers at the ARC Centre of Excellence for Electromaterials Science (ACES), University of Wollongong (UOW) node in NSW, have spent the past three years developing the technology to print living human cells—nerve cells and muscle cells onto tiny biodegradable polymer scaffolds. They’ve also developed a special “ink” that carries the cells.
A new fibre optic medical tool is revolutionising our understanding of serious but socially embarrassing digestive illnesses, such as constipation, diarrhoea and irritable bowel syndrome. Thanks to this device, medical scientists can see for the first time the coordinated, fine and complex muscular activity of the human digestive system in action.
CSIRO optical physicist Dr John Arkwright, together with Dr Philip Dinning, of Flinders University, collected a 2011 Eureka Prize for their creation of the fibre optic catheter, which gleans information about digestive function by measuring pressure. Continue reading Fibre optics: from cables to colon health→
Victorian scientists have discovered a milk protein with the potential to treat metabolic syndrome and chronic muscular and bone diseases.
The protein, when given daily to mice, caused them not only to build more muscle but also to want to exercise. The findings also showed an increase in muscle in mice not given exercise.