Tag Archives: mining

X-rays for gold

China and Australia are the world’s two largest producers of gold. So, it’s fitting that a device combining Australian and Chinese research, and capabilities in high-tech manufacturing, is set to shake up the industry.

Ore processors need to know how much gold is in their raw material to get the most out of it. The current industry standard for testing ore is the fire assay, an elaborate and time-consuming process that requires temperatures over 1000 degrees and toxic chemicals such as lead. It also takes at least 8 hours to complete.

Continue reading X-rays for gold

Healthier trucks and clean air underground—partners in mining technologies

American mines are safer and more efficient thanks to Australian technologies

‘Blood tests’ for big machines

Mining companies across America are increasing the reliability of their trucks, diggers, and other big machines, and saving hundreds of millions of dollars in the process.

They’re giving these big machines regular health tests and comparing the results with a global database for that machine.

The result? They’re fixing machines before they break. This preventative health system was developed by an Australian company, Dingo, which now has 40 people working at its bases in Denver, Brisbane, and Calgary.

Continue reading Healthier trucks and clean air underground—partners in mining technologies

Making mining safer


In Western Australia’s Pilbara iron ore mines, a fleet of robot trucks are moving more than a billion tonnes of dirt and rock. The giant trucks carry 350 tonnes in every load. They’ve been developed over the past decade in partnership with Komatsu.

“Rio Tinto and Japan’s Komatsu came together to produce not just the robots but a technology that is immensely useful to Rio Tinto.

Putting those things together has produced a fantastic result,” says Tetsuji Ohashi, the CEO of Komatsu.

“Mining in the future is all about moving lots and lots of material more efficiently,” says Michael Gollschewski, the MD of Rio Tinto’s Pilbara mines.

“Today we’ve got controllers sitting in the operation centre in Perth, overseeing 72 autonomous trucks 1500 km away in the Pilbara across three different sites. It’s amazing,” he says. 

The sweet side of sulphur: cheap mercury clean-up

A cheap and simple material, using sulphur from petroleum industry waste and plant oils from the food industry, is being tested to clean up mercury pollution from soil and water.

The rubbery material will undergo field tests in 2017 in Australian mining and sugarcane sites, the latter of which use fungicides that contain mercury.  The work is supported by funding from the National Environmental Science Programme’s emerging priorities funding.

“Our technology is about as simple as it can get: mix sulphur with plant oils and heat, then add the resulting material into the contaminated area,” says lead researcher Dr Justin Chalker, of Flinders University. Continue reading The sweet side of sulphur: cheap mercury clean-up

Tracking dust

Statisticians have revealed the surprising source of dust that plagues townships beside a Hunter Valley rail line delivering coal to Newcastle’s busy port.

Airborne dust increases as trains pass. But it wasn’t clear exactly how—for example, whether the dust was escaping uncovered coal wagons or coming from the diesel engines pulling the wagons. The answer was surprising.

Mathematicians from the ARC Centre of Excellence for Mathematical and Statistical Frontiers correlated air-pollution data against information on passing trains and weather conditions.

Continue reading Tracking dust

World’s oldest gem leading us to hidden treasures

Zircon, the oldest mineral on the planet, is helping geologists understand how Earth started out and how it continues to evolve. By better understanding the Earth’s structure, mining companies have been able to find new mineral deposits.

The team sampling with Pan-African Mining geological team in Madagascar. Credit: Julia Galin
The team sampling with Pan-African Mining geological team in Madagascar. Credit: Julia Galin

“Most of the mineral deposits that are exposed on the surface of the planet have already been found and mined, but we need to find the ones that are still hidden,” Dr Elena Belousova says.

She and her colleagues at the ARC Centre of Excellence for Core to Crust Fluid Systems have developed TerraneChron®, a tool that looks at zircons found in geological samples, such as rocks or sand in river beds, to find out when they crystallised.

Continue reading World’s oldest gem leading us to hidden treasures

Trillions of bubbles at work for Australia

Graeme Jameson’s technologies use trillions of bubbles to add billions of dollars to the value of Australia’s mineral and energy industries.

Graeme took flotation, a century-old technology developed in Broken Hill, and transformed it. A turbulent cloud of minute bubbles are pushed through a slurry of ground-up ore where they pick up tiny mineral particles and carry them to the surface.

Continue reading Trillions of bubbles at work for Australia

Mill mapper keeps mines working

If your pepper mill wears out, it’s annoying. But for mines it’s disastrous when their grinders can no longer smash rocks, often costing them $100,000 an hour in downtime.

Photo: Scanalyse/Outotec won the Eureka Prize for Commercialisation of Innovation for their innovative laser scanning technology that measures wear and tear in key mining equipment. Credit: ScienceNetworkWA/Eureka Winners via YouTube

Now, a three-dimensional laser system, which takes 10 million measurements in 30 minutes, can take over the dangerous work of manually evaluating mining machinery conditions.

Continue reading Mill mapper keeps mines working

Bubbles capture minerals and toxic algae

A radical flotation technology has earned Australia over $4 billion in mineral exports each year by improving mineral particle recovery from wastewater.

Jameson Cell technology is used in over 300 mineral processing plants worldwide. Credit: University of Newcastle

Chemical engineer Graeme Jameson, AO, of the University of Newcastle, developed the technology, which was first used in mineral processing plants and is now being applied to other industrial practices.

Continue reading Bubbles capture minerals and toxic algae