The massive team that helped discover the Higgs boson is now hunting more exotic particles, including dark matter.
The ATLAS collaboration involves more than 3,000 physicists from around the world. In 2012, results from ATLAS were vital to the discovery of the Higgs boson, the particle that gives mass to everything in the Universe.
The 7000-tonne ATLAS detector at the Large Hadron Collider on the border of France and Switzerland tracks up to a billion collisions between high-energy protons each second. French and Australian physicists are at the forefront of efforts to decipher this torrent of data. Continue reading What the universe is made of→
In 2012, scientists celebrated at the announcement of the discovery of a Higgs boson-like particle, a subatomic particle that completes our model of how the Universe works.
The announcement was made simultaneously at CERN in Geneva, and to hundreds of physicists gathered in Melbourne for the International Conference on High Energy Physics.
“As scientific discoveries go, this is up there with finding a way to split the atom,” says Prof Geoff Taylor, director of the ARC Centre of Excellence for Particle Physics at the Terascale (CoEPP).
Australian astronomers have long been contributing to our understanding of a strange cosmological phenomenon—the Universe’s missing matter.
In the early 1970s, Ken Freeman of the Australian National University (ANU) determined that spiral galaxies must contain more matter than we can see. He postulated that dark matter—an invisible material first proposed 40 years earlier—must make up at least half the mass of these galaxies. Now, patches of dark matter are thought to be scattered across the Universe, playing a major role in holding galaxies and groups of galaxies together. Continue reading Spinning galaxies reveal missing matter→
Hundreds of Aussie science achievements that you can share in speeches, posts and publications