Tag Archives: instruments

Fibre optics: from cables to colon health

A new fibre optic medical tool is revolutionising our understanding of serious but socially embarrassing digestive illnesses, such as constipation, diarrhoea and irritable bowel syndrome. Thanks to this device, medical scientists can see for the first time the coordinated, fine and complex muscular activity of the human digestive system in action.

FIBRE OPTIC TECHNNOLOGY IS HELPING JOHN ARKWRIGHT UNDERSTAND OUR DIGESTIVE FUNCTION. CREDIT: ISTOCKPHOTO

CSIRO optical physicist Dr John Arkwright, together with Dr Philip Dinning, of Flinders University, collected a 2011 Eureka Prize for their creation of the fibre optic catheter, which gleans information about digestive function by measuring pressure.
Continue reading Fibre optics: from cables to colon health

Putting Einstein to the ultimate test

CSIRO’s Parkes telescope records pulsar signals to try to detect gravitational waves. Credit: David McClenaghan / CSIRO

Einstein’s general theory of relativity predicts them, and they could be scattered throughout the Universe. But so far, gravitational waves— ‘ripples’ in the fabric of space and time—have never been detected. Several Australian teams of astronomers are trying to catch the first signs of one.

Continue reading Putting Einstein to the ultimate test

PlayStation graphics chips drive astronomy supercomputer

MATTHEW BAILES IN THE SWINBURNE VIRTUAL REALITY THEATRE IN FRONT OF AN IMAGE OF THE DOUBLE PULSAR DISCOVERED WITH CSIRO’S PARKES RADIO TELESCOPE. CREDIT: SWINBURNE UNIVERSITY OF TECHNOLOGY.
MATTHEW BAILES IN THE SWINBURNE VIRTUAL REALITY THEATRE IN FRONT OF AN IMAGE OF THE DOUBLE PULSAR DISCOVERED WITH CSIRO’S PARKES RADIO TELESCOPE. CREDIT: SWINBURNE UNIVERSITY OF TECHNOLOGY.

The technology used in your PC or PlayStation is also helping drive a revolution in radio astronomy—the replacement of custom-built hardware with flexible software and data solutions.

“Hardware solutions for radio astronomy have been evolving, but computer power has been evolving much faster,” says Matthew Bailes, from the Swinburne Centre for Astrophysics and Supercomputing. The Centre has developed software systems that are now used in Australia and overseas. Continue reading PlayStation graphics chips drive astronomy supercomputer

Supercomputers bring theory to life

A DEPICTION OF THE DISTRIBUTION OF MATTER IN AN OBJECT NEARLY TEN MILLION LIGHT YEARS ACROSS AND A THOUSAND TIMES THE MASS OF THE MILKY WAY. THOUSANDS OF THESE EXIST IN THE OBSERVABLE UNIVERSE. CREDIT: GREG POOLE, SWINBURNE UNIVERSITY OF TECHNOLOGY.
A DEPICTION OF THE DISTRIBUTION OF MATTER IN AN OBJECT NEARLY TEN MILLION LIGHT YEARS ACROSS AND A THOUSAND TIMES THE MASS OF THE MILKY WAY. THOUSANDS OF THESE EXIST IN THE OBSERVABLE UNIVERSE. CREDIT: GREG POOLE, SWINBURNE UNIVERSITY OF TECHNOLOGY.

Over aeons of time cosmic gas comes together, stars begin to form, supernovae explode, galaxies collide. And computational astronomers can watch it all unfold inside a supercomputer. That’s the kind of work post-doctoral fellows Rob Crain and Greg Poole are doing at the Swinburne Centre for Astrophysics and Supercomputing. Continue reading Supercomputers bring theory to life

Doubling up pays dividends in exoplanet hunt

“Twice the resolution and all the photons,” is Prof Chris Tinney’s new catchphrase. It refers to new equipment being commissioned on the Anglo-Australian Telescope to hunt for planets beyond our Solar System (exoplanets). Chris, from the University of New South Wales, is a leader of the Anglo-Australian Planet Search (AAPS), which has found 32 exoplanets, almost 10% of the worldwide total, since 1998.

Artist’s impression of an exoplanet with moons, orbiting the star HD70642 (photo credit: David A. Hardy, astroart.org (c) PPARC)

A Doppler shift in a star’s light spectrum often indicates the presence of planets. Unlike previous equipment, which frequently missed some of that light, the new system uses a cluster of optical fibres to gather all the starlight, boosting efficiency and doubling the Doppler precision.
Continue reading Doubling up pays dividends in exoplanet hunt

Sifting sky data

THE GIANT MAGELLAN TELESCOPE. CREDIT: GIANT MAGELLAN TELESCOPE—GMTO CORPORATION.
The Giant Magellan Telescope may use Australian Starbugs technology when it begins operating in around 2018. Credit: Giant Magellan Telescope—GMTO Corporation

Imagine an extremely large optical telescope fitted with detectors that can selectively collect light from a particular section of the telescope’s focal plane. Using revolutionary robotic technology called Starbugs, the detector will reconfigure itself in real time to collect from any particular area of the image, and will feed the data into any analytical instrument.

That’s exactly what Matthew Colless and his team at the Australian Astronomical Observatory have in mind with the development of MANIFEST (the many-instrument fibre system)—which make use of the special photonic technologies developed by Joss Bland-Hawthorn and his team at the University of Sydney. Continue reading Sifting sky data

Bringing dark corners of the Universe to light

JOSS BLAND-HAWTHORN HOLDING A PHOTONIC LANTERN, A REVOLUTIONARY DEVICE TO ANALYSE THE LIGHT OF DISTANT STARS, INVENTED IN AUSTRALIA. CREDIT: CHRIS WALSH.
JOSS BLAND-HAWTHORN HOLDING A PHOTONIC LANTERN, A REVOLUTIONARY DEVICE TO ANALYSE THE LIGHT OF DISTANT STARS, INVENTED IN AUSTRALIA. CREDIT: CHRIS WALSH.

Using the Gemini South telescope in Chile, a team of astronomers led by Joss Bland-Hawthorn of the University of Sydney revealed the faint, outer regions of the galaxy called NGC 300, showing that the galaxy is at least twice the size as thought previously. The findings suggest that our own Milky Way galaxy could also be bigger than the textbooks say.

But Joss’s telescope observations are just a part of his contribution to astronomy. He is also helping to pioneer a new technology known as astrophotonics, which uses optical systems to improve our understanding of the Universe. Continue reading Bringing dark corners of the Universe to light

Seeing a beach ball on the moon

SUSI AT NARRABRI—ONE OF THE HIGHEST SPATIAL RESOLUTION TELESCOPES USING VISIBLE LIGHT. CREDIT: GORDON ROBERTSON.
SUSI AT NARRABRI—ONE OF THE HIGHEST SPATIAL RESOLUTION TELESCOPES USING VISIBLE LIGHT. CREDIT: GORDON ROBERTSON.

When the present upgrade is complete, the Sydney University Stellar Interferometer (SUSI) will be able to resolve objects the size of a beach ball on the Moon, says Mike Ireland of Macquarie University in Sydney. This large interferometer will be used to determine the dimensions—size, weight and velocity—of pulsating stars, hot stars, and massive stars. SUSI will also be involved in the search for binary stars and their planetary companions. Continue reading Seeing a beach ball on the moon

Keck telescope dons a mask

A FALSE-COLOUR COMPOSITE IMAGE OF 11 FRAMES SHOWING THE 8-MONTH CIRCULAR ROTATION OF THE BINARY STAR, WOLF-RAYET 104. CREDIT: PETER TUTHILL.
A FALSE-COLOUR COMPOSITE IMAGE OF 11 FRAMES SHOWING THE 8-MONTH CIRCULAR ROTATION OF THE BINARY STAR, WOLF-RAYET 104. CREDIT: PETER TUTHILL.

It seems counterintuitive, but restricting the amount of light that reaches a telescope can sharpen up its output. The technique will be used on NASA’s successor to the Hubble Space Telescope: the James Webb Space Telescope. But it is already proving its worth here on Earth.

Images of the binary star known as Wolf-Rayet 104 (WR104), published in 2008 by Peter Tuthill of the University of Sydney, reveal the power of the new technique, which is known as aperture masking. WR104 should be difficult to see because it is in a deep cloud of dust, but Peter and his colleagues used aperture masking when observing the star with the Keck telescope in Hawai’i. The mask leads to sharper images because it cuts down complexity and makes the data easier to process and rid of error. Continue reading Keck telescope dons a mask