People have speculated about the potential of quantum computers for decades—how they would make child’s play of constructing and testing new drugs, searching through huge amounts of data and ensuring security of information.
This scenario may be coming true in a high-tech basement at the University of New South Wales.
A new computer chip, which uses light instead of electronic signals to process information, could lead to high security, energy-efficient internet links more than 1,000 times faster than today’s networks.
Car manufacturers are queuing up to meet the Melbourne makers of the world’s smallest and cheapest automotive radar system.
The Radar on a Chip (ROACH) detects and tracks objects around the car. It’s part of an active safety system that can warn drivers about possible collisions and, if necessary, integrate with braking, steering, seatbelt and airbag systems to avoid, or minimise the consequences of, an accident.
Unhealthy cells are less “squishy” than their healthy counterparts. That difference is used by a small device developed by engineers at Monash University to test living blood cells for diseases, such as malaria and diabetes. The device can then sort the cells for future culturing and experimentation without harming them.
The patented “lab-on-a-chip” and accompanying control system has attracted considerable interest from pharmaceutical companies, according to co-inventor Dr Greg Sheard of the Department of Mechanical and Aerospace Engineering. Continue reading Health check for live cells→
The world’s largest telescope, the Square Kilometre Array (SKA), is expected to generate more data in a single day than the world does in a year at present. And even its prototype, CSIRO’s ASKAP, is expected to accumulate more information within six hours of being switched on than all previous radio telescopes combined.
Such gargantuan streams of data require serious management, and that will be one of the jobs of the $80 million iVEC Pawsey Centre in Perth, which is due to be completed in 2013.
When Australian biosecurity officers find a suspicious insect or other invasive pest, they can now quickly identify it, drawing upon experts around the world using microscopes linked via the internet.
The Remote Microscope Network (RMN), developed by the Cooperative Research Centre for National Plant Biosecurity (CRCNPB), allows the officers to examine an insect or specimen closely in real time, manipulating it under the microscope while discussing its identification with national and international experts.
The system is coupled to a comprehensive diagnostic information database, allowing comparison with images and information about the suspect.
Until now identification in the field of invasive insects and other pests has been a slow and cumbersome process. It often involved sending a sample to a capital city and waiting several weeks for results.
The RMN is used in conjunction with a Pest and Disease Image Library and a Plant Biosecurity Toolbox, which includes high quality images as well as information about pest distribution. Together they enable field officers to identify pests quickly and accurately, and respond to any threats. This could save millions of dollars in eradication costs and lost market access for Australian producers.
“We’ve added a new, innovative tool to our system which is very cost effective and efficient, and decreases the response time when dealing with potentially harmful pests and diseases,” says Dr Simon McKirdy, CEO of the CRCNPB. “Now relevant diagnostic information is available to field officers around Australia and to our near neighbours.”
Photo: The Remote Microscope Network will allow experts to ‘look over the shoulder’ of biosecurity officers and help them identity pests.
Mathew Joosten crashes several helicopters a day—without any deaths or injury. He uses computer simulation.
A research student of the Cooperative Research Centre for Advanced Composite Structures, Mr Joosten has designed ‘virtual crash test’ software to help accelerate the development of safety systems.
Drivers of trucks, dozers, graders and excavators at Australian mines could soon be saved from the risks of fatigue by their headgear.
Incidents on mine sites caused by tiredness are a significant cause of injuries and deaths, and cost the industry hundreds of millions of dollars in lost production and accidents each year. So Dr Daniel Bongers at the Cooperative Research Centre for Mining (CRCMining) in Brisbane has invented a SmartCap, fitted with sophisticated sensors which can “read” the brain’s nerve activity through hair and detect the level of fatigue of the wearer.
Keeping electronics cool in high power applications such as telecommunications and building electronics on the nanoscale are two areas where there is an alternative to traditional silicon—electronics using diamond. Continue reading Diamonds for extreme electronics→
Australian engineers and physicists have developed a ‘single electron reader’, one of the key building blocks needed to make a quantum computer.
Quantum computers will use the spin, or magnetic orientation, of individual electrons for their calculations. And, because of the quantum nature of electrons, quantum computers could be exponentially faster at certain tasks than traditional computers.
In order to employ electron spin, a quantum computer needs both a way of changing the spin state (writing information) and of measuring that change (reading information). Together these two form a quantum bit or qubit – the equivalent of the bit in a conventional computer. Continue reading Computing with a single electron→
Hundreds of Aussie science achievements that you can share in speeches, posts and publications