An Australian physicist is unravelling the mystery of how the hot, brilliant stars we see today emerged from our Universe’s “dark age”.
Theoretical physicist Prof Stuart Wyithe is one of the world’s leading thinkers on the Universe as it was 13 billion years ago, when there were no stars or galaxies, just cold gas.
In the next few years astronomers will learn much more as powerful new telescopes come online.
Electrodes made of diamond are helping Melbourne researchers build a better bionic eye.
Some types of blindness are caused by diseases where the light-sensing part of the retina is damaged, but the nerves that communicate with the brain are still healthy—for example, retinitis pigmentosa and age-related macular degeneration.
Dr David Garrett and his colleagues at the Melbourne Materials Institute at the University of Melbourne are using diamond to build electrodes that can replace the light-sensing function of the retina: they deliver an electrical signal to the eye via a light-sensing camera.
Twenty years ago doctors thought epilepsy was caused by injuries or tumours but, thanks to the work of a Melbourne paediatrician, we now know that there’s a large genetic factor.
Prof Ingrid Scheffer, a paediatric neurologist at the Florey Neuroscience Institutes and the University of Melbourne, has spent the last 20 years looking at the genetics of epilepsy, particularly in children.
We now know that genes play a large role and that’s opened the way to better diagnosis, treatment, counselling, and potential cures.
In particular, Ingrid’s team and her collaborators at the University of South Australia have discovered that one kind of inherited infant epilepsy is due to a single letter change in the genetic code.
Prof Graeme Clark changed the way we thought about hearing when he gave Rod Saunders the first cochlear implant in 1978—now he might just do it again.
Back then, Graeme brought together a team of engineers and medical personnel; now he’s trying to reveal exactly how the brain is wired for sound—by bringing together software specialists and experts on materials that can interface with the brain.
“We’re aiming to get closer to ‘high fidelity’ hearing for those with a cochlear implant,” says Graeme, now distinguished researcher at NICTA and laureate professor emeritus at the University of Melbourne. “This would mean they could enjoy the subtlety of music or the quiet hum of a dinner party.”
Imagine a power station that’s literally sprayed onto your roof —and could match the colour of your tiles.
Thin film solar cells are thinner, cheaper and more versatile than the traditional silicon solar panels. Spray-on solar is a next step in the evolution of on-site power generation.
“These cells can be made with semiconductor dye materials, so you can match them to any colour or pattern you like—they’ll just convert that part of the solar spectrum into electricity. In the future we could have billboards that act as solar panels,” says Dr Gerry Wilson of CSIRO’s flexible electronics team.
Dr Georgina Such imagines a miniscule capsule designed like a set of Russian babushka dolls.
The capsule is designed to sneak through the blood stream untouched.
When it finds its target—a cancer cell—it passes into the cell, sheds a layer, finds the part of the cellular machinery it needs to attack, sheds another layer; and then releases its cargo of drugs, destroying the cancer cell and only the cancer cell.
Creating such a capsule may take decades, but Georgina and her colleagues at the University of Melbourne have already developed several materials which have the potential to do the job.
The long-term survival chances of patients with breast cancer plummet if the cancer recurs or spreads to other parts of the body in the process known as metastasis.
So the National Breast Cancer Foundation recently funded a five-year, $5 million National Collaborative Research Program to investigate metastasis and discover potential drugs to stop or slow it. The EMPathy Breast Cancer Network program was also charged with finding ways of diagnosing metastasis before it occurs. The research is highly dependent on the latest sequencing technology and demands the massive computer power and sophisticated data handling techniques of modern bioinformatics. Continue reading Supercomputer probes cancer crisis point→
New lubricants containing star-shaped polymers have hit the market, thanks to Australian polymer technology. Lubrizol Corporation has launched the first commercial products developed using CSIRO’s Reversible Addition Fragmentation chain Transfer (RAFT) polymer synthesis process.
CSIRO chemist Dr Ezio Rizzardo says the RAFT process allows much greater flexibility and potential for polymer synthesis, compared with conventional methods. “Conventional polymerisation is a relatively simple process with two ingredients: large amounts of monomer and a small amount of an initiating agent. You apply heat; a chain reaction starts and runs to completion, making polymer chains that can have widely varying lengths.” Continue reading Star-shaped polymers boost engine performance→
The technology used in your PC or PlayStation is also helping drive a revolution in radio astronomy—the replacement of custom-built hardware with flexible software and data solutions.
“Hardware solutions for radio astronomy have been evolving, but computer power has been evolving much faster,” says Matthew Bailes, from the Swinburne Centre for Astrophysics and Supercomputing. The Centre has developed software systems that are now used in Australia and overseas. Continue reading PlayStation graphics chips drive astronomy supercomputer→
Over aeons of time cosmic gas comes together, stars begin to form, supernovae explode, galaxies collide. And computational astronomers can watch it all unfold inside a supercomputer. That’s the kind of work post-doctoral fellows Rob Crain and Greg Poole are doing at the Swinburne Centre for Astrophysics and Supercomputing. Continue reading Supercomputers bring theory to life→
Hundreds of Aussie science achievements that you can share in speeches, posts and publications