Mapping a future for Australian birds

Australia’s birds are bright and noisy compared with birds elsewhere, so perhaps it is no surprise they account for over 18 million of the more than 30 million observations in the Atlas of Living Australia; including records from before European settlement.

Now, funded by the Australian National Data Service (ANDS), a team led by spatial ecologist Dr Jeremy VanDerWal of the Centre for Tropical Biodiversity and Climate Change at James Cook University (JCU) is developing a website, known as “Edgar”, to clean up existing records and augment them with reliable observations from enthusiastic and knowledgeable bird watchers.

Continue reading Mapping a future for Australian birds

The complex life of coral

Dr Tracy Ainsworth’s research is changing our understanding of the tiny coral animals that built Australia’s iconic Great Barrier Reef. Tracy and her colleagues at James Cook University in Townsville have found that the process of coral bleaching is a far more complex than previously thought, and begins at temperatures lower than previously considered. And she’s done so by applying skills in modern cell biology which she picked up working in neuroscience laboratories.

Tracy Ainsworth, James Cook University. Credit: L’Oréal Australia/sdpmedia.com.au
Tracy Ainsworth, James Cook University. Credit: L’Oréal Australia/sdpmedia.com.au

Her achievements won her a $20,000 L’Oréal Australia For Women in Science Fellowship in 2011, which she is using to study the low light, deep water reefs that underlie tropical surface reefs at depths of 100 metres or more.
Continue reading The complex life of coral

New light on storing energy

Solving the problem of how to store energy is essential for a future run on renewables.

That’s why promising materials for hydrogen fuel cells and high capacity, long-lived batteries are being explored at the atomic level by the Australian Synchrotron.

QUINFEN GU IS INVESTIGATING A NEW CLASS OF HYDROGEN STORAGE MATERIALS. CREDIT: ISTOCKPHOTO

Australian Synchrotron scientist Dr Qinfen Gu is investigating a new class of hydrogen storage materials being developed by scientists at the University of Wollongong and their international collaborators.Qinfen is using the powerful X-rays of the synchrotron to observe and analyse the structure of these materials. Continue reading New light on storing energy

The mathematics of conservation

The Earth is losing species and ecosystems fast, but figuring out the best response is not easy when information, time and money are scarce.

Dr Eve McDonald Madden helps saves species—with maths. Credit: L’Oréal Australia/sdpmedia.com.au
Dr Eve McDonald Madden helps saves species—with maths. Credit: L’Oréal Australia/sdpmedia.com.au

Dr Eve McDonald-Madden is using maths to help governments and others make tough decisions on how best to use limited resources to preserve ecosystems under threat.

The young Australian scientist helps to save species, not by going out into the field, but by analysing the data other people have collected on endangered species. Continue reading The mathematics of conservation

Could a neutron beam help stop train derailments?

Scientists are using neutron radiation to look inside solid steel and analyse the stresses within rail tracks. This research will ultimately improve the safety and operational and repair efficiency of heavy-haul railways.

The wheels of heavily laden trains place considerable rolling-contact loading on rail tracks. The heavy loads can change the material properties near the running surface and within the railhead—causing “fatigue”. A number of serious incidents, including derailments, have been attributed to rail failures resulting from rolling-contact fatigue and accumulated residual stress.

Bragg Institute instrument scientist Dr Vladimir Luzin is looking at fatigue in insulated rail joints (IRJs) within a research project initiated by the Cooperative Research Centre for Rail Innovation. IRJs are an integral part of rail track systems, but they are also weak points, and their replacement is the single largest track maintenance cost in New South Wales, apart from ballast work.

“When a rail comes out of a factory it has already some residual stress,” explains Vladimir. “Now we are looking at the atomic level to see how these stresses develop through the life of the rail joints.”

Vladimir uses neutron diffraction to see how residual stresses evolve through different production steps and during service. The beauty of neutrons is that they can penetrate steel—unlike X-rays—and they can be used to map the stresses inside the rail components non-destructively.

Manufacturers and operators want to control and minimise these stresses. This research, backed by modellers and metallurgists, will help industry partners cut costs, modify production methods and develop rails of a quality and strength that can handle increasing loads.

Bragg Institute, Australian Nuclear Science and Technology Organisation, Vladimir Luzin, Tel: +61 2 9717 7262, vladimir.luzin@ansto.gov.au,  www.ansto.gov.au

Birds, bees, robots and flying

He isn’t a pilot, but few people would know more about ways of navigating while flying than Prof Mandyam Srinivasan (Srini) of the Queensland Brain Institute. And he’s steadily finding out more.

Srinivasan works on bee navigation: here he is in the All-Weather Bee Flight Facility at the Queensland Brain Institute (QBI) Credit: Dee McGrath/QBI
Srinivasan works on bee navigation: here he is in the All-Weather Bee Flight Facility at the Queensland Brain Institute (QBI). Credit: Dee McGrath/QBI

Initially known for his work in bees, since receiving the Prime Minister’s Prize for Science in 2006, Srini has shown that birds and insects use a similar system of visual guidance to prevent themselves from crashing into trees when flying through dense forest.

Continue reading Birds, bees, robots and flying

New tool for better breast cancer detection

Queensland scientists are helping radiologists to spot the more subtle signs of breast cancer, using computer tools and magnetic resonance imaging (MRI).

Photo: Contrast-enhanced MRI of a breast. Credit: Yaniv Gal
Photo: Contrast-enhanced MRI of a breast. Credit: Yaniv Gal

Currently MRI allows radiologists to detect lumps or other growths by creating a 3D anatomical image of the breast.

Prof Stuart Crozier and his team at the University of Queensland have developed a computer tool that improves MRI detection by spotting more subtle indicators of cancer.

“When cancers are just starting to form, they form abnormal blood vessels very early, to feed their rapid cell division,” Stuart says.

“By seeing how certain contrast agents move through the tissue, we can pick up the formation of these blood vessels.”

Photo: Research Assistant Michael Wildermoth works with the software that shows how certain contrast agents move through breast tissue. Credit: Kim Nunes
Photo: Research Assistant Michael Wildermoth works with the software that shows how certain contrast agents move through breast tissue. Credit: Kim Nunes

This works towards solving two issues with conventional MRIs.

First, it should reduce the number of false positive results and therefore the number of women put through biopsies of benign tumours.

Second, this should catch tumours earlier, not just when tumours are big enough to discern visually.

“The goal is to assist radiologists to identify areas of cancer risk that may not be obvious on conventional images,” Stuart says.

Stuart, a Fellow of the Australian Academy for Technological Sciences and Engineering (ATSE), was recently presented with a 2012 Clunies Ross Award for his contributions to the engineering of magnetic resonance imaging (MRI) technology.

The research, funded as an Australian Research Council’s Discovery Project, is now undergoing trials with 140 women at private radiology firm Queensland X-ray.

Photo: Contrast-enhanced MRI of a breast.
Credit: Yaniv Gal
Photo: Research Assistant Michael Wildermoth works with the software that shows how certain contrast agents move through breast tissue.
Credit: Kim Nunes

University of Queensland, Stuart Crozier, stuart@itee.uq.edu.au, www.itee.uq.edu.au

Galaxies point the way to dark energy

WiggleZ will hunt for dark energy in the faint patterns of 293,000 distant galaxies. Credit: NASA / ESA / HUDF09 Team

A project to produce more than double the number of galaxy distance measurements than all other previous surveys, could lead to an explanation of one of nature’s biggest mysteries—whether dark energy, an invisible force that opposes gravity, has remained constant or changed since the beginning of time.

Continue reading Galaxies point the way to dark energy

Yeast to make jet fuels

Yeast to make jet fuels
Dr Claudia Vickers is leading a team looking at modifying baker’s yeast to make aviation fuel. Credit: AIBN.

Baker’s yeast could soon be turning sugar cane into jet fuel. Dr Claudia Vickers from the Australian Institute for Bioengineering and Nanotechnology (AIBN) at the University of Queensland leads a team studying strains which already produce ethanol, industrial chemicals and pharmaceuticals.

The researchers want to use the yeast strains S. cerevisiae to make isoprenoids, chemicals traditionally used to make pharmaceuticals and food additives, but which can also serve as fuel.

The idea is to give the yeast new functions, so they can consume sucrose from cane sugar and produce isoprenoid products, which can be used to replace or supplement traditional jet fuel, without modifying existing aircraft engines or infrastructure.

Claudia’s lab was originally looking at the gut bacteria E. coli, which could also be used to produce isoprenoids, but the yeast is now looking more promising.

Other research groups at The University of Queensland and James Cook University are looking to develop aviation fuel from algae and the oilseed tree Pongamia, both of which can be grown without competing with traditional food crops for land or water.

The University’s sustainable aviation fuel initiative has attracted several backers including Boeing, Virgin Australia, Mackay Sugar, Brisbane-based IOR Energy, and the US-based green energy company Amyris. It is funded by the Queensland State Government.

Photo: Dr Claudia Vickers is leading a team looking at modifying baker’s yeast to make aviation fuel.
Credit: AIBN

Australian Institute for Bioengineering & Nanotechnology, UQ, Claudia Vickers, Tel: +61 7 334 63158, c.vickers@uq.edu.au, www.aibn.uq.edu.au

Can we save the tiger with mathematics?

Eve McDonald-Madden

Eve McDonald Madden, The University of Queensland (credit: L’Oréal Australia/sdpmedia.com.au)
Eve McDonald Madden, The University of Queensland (credit: L’Oréal Australia/sdpmedia.com.au)

The University of Queensland

Turning to mathematics to allow us to make smarter conservation decisions.

The diversity of life on Earth underpins the global economy. But we’re losing biodiversity at an unprecedented rate and human-induced climate change will threaten more species—up to 37 per cent of the plants and animals with which we share the world. Continue reading Can we save the tiger with mathematics?