Fresh Science 2010

Each year we identify early-career scientists with a discovery and bring them to Melbourne for a communication boot camp. Here are some of their stories.

More at www.freshscience.org.au

Print your own lasers, lights and TV screens

Print your own lasers, lights and TV screens
Jacek Jasieniak sprinkling quantum dots. Credit: Jacek Jasieniak

Imagine printing your own room lighting, lasers, or solar cells from inks you buy at the local newsagent. Jacek Jasieniak and colleagues at CSIRO, the University of Melbourne and the University of Padua in Italy, have developed liquid inks based on quantum dots that can be used to print such devices and in the first demonstration of their technology have produced tiny lasers. Quantum dots are made of semiconductor material grown as nanometre-sized crystals, around a millionth of a millimetre in diameter. The laser colour they produce can be selectively tuned by varying their size.

Cling wrap captures CO2
Colin Scholes operates a test rig for his carbon capture membrane. Credit: CO2 CRC

Cling wrap captures CO2

High tech cling wraps that ‘sieve out’ carbon dioxide from waste gases can help save the world, says Melbourne University chemical engineer, Colin Scholes who developed the technology. The membranes can be fitted to existing chimneys where they capture CO2 for removal and storage. Not only are the new membranes efficient, they are also relatively cheap to produce. They are already being tested on brown coal power stations in Victoria’s La Trobe Valley, Colin says. “We are hoping these membranes will cut emissions from power stations by up to 90 per cent.”

Continue reading Fresh Science 2010

Big ecology: From tundra to savanna

Why are some plant seeds very small and others large? Angela Moles tackled this simple question by compiling information on 12,669 plant species. She discovered that plant seeds in the tropics are, on average, 300 times bigger than seeds in colder places like the northern coniferous forests. She then used these data to follow the evolutionary history of seed size over hundreds of millions of years.

Angela Moles working with plants (Photo credit: L’Oréal/SDP Photo)
Angela Moles working with plants (Photo credit: L’Oréal/SDP Photo)

The study was the first of its kind and the results, published in Science and PNAS, have revolutionised our understanding of the factors that determine the size of offspring in plants and animals. Angela is a leader in developing a new approach to ecology—one that could allow us to accurately model and predict the impact of climate change on ecosystems.
Continue reading Big ecology: From tundra to savanna