A new printing technology can now simultaneously print living stem cells and the environment they need to survive and become the right cell type. The first application is a cartilage repair kit.
“Our current 3D printers can integrate living and non-living materials in specific arrangements at a range of scales, from micrometres to millimetres,” says Professor Gordon Wallace, Director of the ARC Centre of Excellence for Electromaterials Science (ACES) at the University of Wollongong.
“And we’re developing new approaches that will enable 3D printing of nano-dimensional features.”
Seagrass meadows provide food and habitat for everything from dugongs and birds to fish and tiny crabs.
Globally we’re losing over 100 sq. km per year due to dredging, coastal developments and runoff. That’s bad news for the animals they support, and bad news for us too, as seagrass supports healthy coastal fisheries as well as acting as a carbon store.
To see how seagrass can be given a fighting chance, Dr Paul Wu at the ARC Centre of Excellence for Mathematical and Statistical Frontiers and collaborators have put an extended modelling technique to new use, predicting seagrass health and suggests how some modified human activities could reduce the damage.
A stable and compact nuclear waste technology is moving from research level to industrial-scale at the Australian Nuclear Science and Technology Organisation (ANSTO).
The planned full-scale nuclear waste treatment plant incorporates ANSTO’s Synroc innovation that locks away radioactive waste products by mimicking natural geology.
“A key part of the Synroc process is Hot Isostatic Pressing, which applies heat and pressure to minimise the disposal volume and transform liquid radioactive waste into a chemically durable material suitable for long term storage,” says Gerry Triani, Technical Director at ANSTO Synroc.
We can make biofuels with algae, but can we make them commercially viable?
A University of Queensland (UQ) research team is working towards it – and Siemens, Neste Oil Corp, the Queensland Government and others have joined their quest.
The Solar Biofuels Research Centre is one of the most advanced national facilities investigating the development and use of high-efficiency microalgae production platforms.
Professor Perry Bartlett is putting people with dementia on treadmills.
He has already reversed dementia and recovered spatial memories in mice through exercise. And in 2016 he and colleagues at The University of Queensland will begin clinical trials to see if exercise will have the same impact in people with dementia. Then he’ll look at depression.
Underpinning these projects is the idea that the brain is constantly changing; and that learning, memory, mood, and many other brain functions are in part regulated by the production of new neurons.
Sending quantum messages over long distances will be challenging. The signal will have to be amplified every few hundred kilometres, but conventional optical amplification would destroy the quantum message.
In a quantum information system, if you measure the light, you will destroy the information encoded on it. You need to store the light itself.
“We have to catch and store the light, but we’re not allowed to look at it to see what information it contains. If the system is working, the light will be exactly the same when we let it out again. We do this by absorbing the light into a cloud of atoms,” says Dr Ben Buchler.
Hot and salty water is a common by-product of industries such as textiles, food and dairy production. But new technology that allows this water to be purified, collected and re-used on site has been developed by Victorian scientists.
Their compact module, smaller than the size of a human, can transform a wasteful industrial operation into an efficient process that recycles energy, water and materials.
“We’ve calculated that our module can reduce water use by more than 90 per cent in some industrial settings,” Professor Mikel Duke says.
We know the Southern Ocean plays a big role in our climate, but there’s much to learn about how and where clouds form over the sea, how they influence global temperatures, and how the wind affects cloud formation and how much carbon dioxide our oceans can absorb.
Now a 60m ‘wave pool in a wind tunnel’ built by Associate Professor Jason Monty is allowing researchers from The University of Melbourne, Swinburne, and Monash University to find out.
“We know that small eddies at the surface of the ocean affect how evaporation occurs and gasses are exchanged, but this turbulence is not included in climate models, as no one has been able to measure it,” Jason says.
Cool thinking by an Australian defence scientist while a bushfire bore down on his family home provided first responders with clearer satellite images of the blaze, and likely prevented further devastation.
The Sampson Flat bushfires in South Australia claimed the lives of around 900 animals, destroying 27 houses along with other property in January 2015.
Chris Ekins evacuated his family, but while preparing to protect their home he heard on local ABC radio that aircraft were having difficulty seeing through the smoke.
Zircon, the oldest mineral on the planet, is helping geologists understand how Earth started out and how it continues to evolve. By better understanding the Earth’s structure, mining companies have been able to find new mineral deposits.
“Most of the mineral deposits that are exposed on the surface of the planet have already been found and mined, but we need to find the ones that are still hidden,” Dr Elena Belousova says.
She and her colleagues at the ARC Centre of Excellence for Core to Crust Fluid Systems have developed TerraneChron®, a tool that looks at zircons found in geological samples, such as rocks or sand in river beds, to find out when they crystallised.