Our blood has a built-in system for breaking up heart attack-inducing clots—and we’re a step closer to drugs that could switch that system on at will.
Australian researchers have won the decades-long race to define the structure of plasminogen—a protein whose active form quickly dissolves blood clots.
The current crop of clot-busting drugs have many side effects, including bleeding and thinning of the blood, so harnessing the body’s own mechanism for clearing clots could offer a better way. Continue reading Clues to switching off your blood clots→
Unhealthy cells are less “squishy” than their healthy counterparts. That difference is used by a small device developed by engineers at Monash University to test living blood cells for diseases, such as malaria and diabetes. The device can then sort the cells for future culturing and experimentation without harming them.
The patented “lab-on-a-chip” and accompanying control system has attracted considerable interest from pharmaceutical companies, according to co-inventor Dr Greg Sheard of the Department of Mechanical and Aerospace Engineering. Continue reading Health check for live cells→
A new brain implant could deliver anti-epilepsy drugs straight to where they’re needed and, in future, on demand. This will be particularly helpful for the 30 per cent of epilepsy patients who suffer severe side-effects, such as nausea, rashes, weight change and dizziness, from their medication, leaving them unable to be treated.
The implant is a biodegradable polymer that ARC Centre of Excellence for Electromaterials Science associate Bionics program leader A/Prof Simon Moulton compares to the types of polymers used in dissolvable stitches. Continue reading On-demand epilepsy drug→
CSIRO’s Australian Square Kilometre Array Pathfinder (ASKAP) telescope is already booked out for much of its first five years of data gathering, even before it formally begins early operations in 2013.
More than 400 astronomers from over a dozen nations have already signed up to look for pulsars, measure cosmic magnetic fields, and study millions of galaxies.
ASKAP was built at the specifically radio-quiet Murchison Radio-astronomy Observatory (MRO) in Western Australia as a technology demonstrator for the $2 billion Square Kilometre Array radio telescope. Continue reading Wide open skies for Australian astronomy→
An Australian physicist is unravelling the mystery of how the hot, brilliant stars we see today emerged from our Universe’s “dark age”.
Theoretical physicist Prof Stuart Wyithe is one of the world’s leading thinkers on the Universe as it was 13 billion years ago, when there were no stars or galaxies, just cold gas.
In the next few years astronomers will learn much more as powerful new telescopes come online.
A new fibre optic medical tool is revolutionising our understanding of serious but socially embarrassing digestive illnesses, such as constipation, diarrhoea and irritable bowel syndrome. Thanks to this device, medical scientists can see for the first time the coordinated, fine and complex muscular activity of the human digestive system in action.
CSIRO optical physicist Dr John Arkwright, together with Dr Philip Dinning, of Flinders University, collected a 2011 Eureka Prize for their creation of the fibre optic catheter, which gleans information about digestive function by measuring pressure. Continue reading Fibre optics: from cables to colon health→
The Earth is losing species and ecosystems fast, but figuring out the best response is not easy when information, time and money are scarce.
Dr Eve McDonald-Madden is using maths to help governments and others make tough decisions on how best to use limited resources to preserve ecosystems under threat.
The young Australian scientist helps to save species, not by going out into the field, but by analysing the data other people have collected on endangered species. Continue reading The mathematics of conservation→
Neutrons and native frogs are an unlikely but dynamic duo in the battle against antibiotic-resistant bacteria, commonly known as superbugs, recent research has shown.
The skin secretions of the Australian green-eyed and growling grass frogs contain peptides (small proteins) that help frogs fight infection. Researchers hope these peptides will offer a new line of defence against a range of human bacterial pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Continue reading Frog peptides versus superbugs→
Twenty years ago doctors thought epilepsy was caused by injuries or tumours but, thanks to the work of a Melbourne paediatrician, we now know that there’s a large genetic factor.
Prof Ingrid Scheffer, a paediatric neurologist at the Florey Neuroscience Institutes and the University of Melbourne, has spent the last 20 years looking at the genetics of epilepsy, particularly in children.
We now know that genes play a large role and that’s opened the way to better diagnosis, treatment, counselling, and potential cures.
In particular, Ingrid’s team and her collaborators at the University of South Australia have discovered that one kind of inherited infant epilepsy is due to a single letter change in the genetic code.
Electrodes made of diamond are helping Melbourne researchers build a better bionic eye.
Some types of blindness are caused by diseases where the light-sensing part of the retina is damaged, but the nerves that communicate with the brain are still healthy—for example, retinitis pigmentosa and age-related macular degeneration.
Dr David Garrett and his colleagues at the Melbourne Materials Institute at the University of Melbourne are using diamond to build electrodes that can replace the light-sensing function of the retina: they deliver an electrical signal to the eye via a light-sensing camera.