Filtering the blood to keep cancer in check

A new diagnostic system used to detect cancer cells in small blood samples could next be turned towards filtering a patient’s entire system to remove those dangerous cells – like a dialysis machine for cancer – says an Australian researcher who helped develop the system.

The technique was developed for cancer diagnosis, and is capable of detecting (and removing) a tiny handful of cancer-spreading cells from amongst the billions of healthy cells in a small blood sample.

The revolutionary system, which works to diagnose cancer at a tenth of the cost of competing technologies, is now in clinical trials in the US, UK, Singapore and Australia, and is in the process of being commercialised by Clearbridge BioMedics PteLtd in Singapore.

Continue reading Filtering the blood to keep cancer in check

Looking for dark matter in a gold mine

Deep underground in rural Victoria, Matteo Volpi is searching for evidence of the cosmic glue that holds the Universe together: dark matter.

Matteo is taking the initial measurements for the study at Stawell Gold Mine where an international team is set to construct a $3.5 million laboratory more than a kilometre underground.

Matteo Volpi is looking for dark matter in the Stawell Gold Mine. Credit: Michael Slezak
Matteo Volpi is looking for dark matter in the Stawell Gold Mine. Credit: Michael Slezak

Understanding dark matter is regarded as one of the most important questions of modern particle physics.

“If we nail it, it’s a Nobel Prize– winning experiment,” says the project leader Elisabetta Barberio, a University of Melbourne physicist and chief investigator of the Australian Research Council Centre of Excellence for Particle Physics at the Terascale (CoEPP).

Continue reading Looking for dark matter in a gold mine

Which prostate cancers can be left alone?

Only 10 per cent of prostate cancers are lethal, but which ones? Australian researchers have tracked the mutations that drive the cancer to spread through the body, and eventually become lethal.

Bioinformaticians can use Circos plots to visualise how cancer genomes differ from healthy ones. Credit: Peter Casamento
Bioinformaticians can use Circos plots to visualise how cancer genomes differ from healthy ones. Credit: Peter Casamento

The research shows they can be detected in the original tumour and even in blood samples. Testing the DNA of prostate cancer cells may help clinicians in the future identify which cancers need to be urgently removed and which ones might simply be monitored.

“Some advanced cancer cells evolve the ability to break away from their original location, travel through the bloodstream and create secondary tumours in another part of the body,” explains Clare Sloggett, Bioinformatician and Research Fellow at the Victorian Life Sciences Computation Initiative (VLSCI). “Cells in this state of metastasis are the most deadly.”

Continue reading Which prostate cancers can be left alone?

Shared data reveals radio bursts, and a lunch break

In May 2014, a team led by PhD candidate Emily Petroff from Swinburne University was the first to see ‘fast radio bursts’ (FRBs) live, using the Parkes radio telescope in central New South Wales. The search was triggered by signals found in recycled data. They also discovered that someone was opening the kitchen microwave.

Continue reading Shared data reveals radio bursts, and a lunch break