CSIRO’s Australian Square Kilometre Array Pathfinder (ASKAP) telescope is already booked out for much of its first five years of data gathering, even before it formally begins early operations in 2013.
More than 400 astronomers from over a dozen nations have already signed up to look for pulsars, measure cosmic magnetic fields, and study millions of galaxies.
ASKAP was built at the specifically radio-quiet Murchison Radio-astronomy Observatory (MRO) in Western Australia as a technology demonstrator for the $2 billion Square Kilometre Array radio telescope. Continue reading Wide open skies for Australian astronomy→
It’s not due to begin operating until 2013, but astronomers from around the world are already lining up to use CSIRO’s Australian Square Kilometre Array Pathfinder (ASKAP). In fact, the first five years of ASKAP’s operation are already booked out, with ten major international Survey Science projects looking for pulsars, measuring cosmic magnetic fields, studying millions of galaxies, and more. Continue reading Australia’s SKA demonstrator already booked out→
On a mountaintop in northern New South Wales sits a new telescope equipped with Australia’s largest digital camera. The Australian National University’s (ANU) SkyMapper facility has been established at Siding Spring Observatory to conduct the most comprehensive optical survey yet of the southern sky.
Fully automated, the telescope is measuring the shape, brightness and spectral type of over a billion stars and galaxies, down to one million times fainter than the eye can see.
A new ‘super survey’ is producing the largest database of galaxy measurements, spanning the last five billion years of cosmic history. The International Galaxy and Mass Assembly (GAMA) project is combining data from ground-and space-based observatories to measure the ‘haloes’ of dark matter that surround galaxies.
“The Cold Dark Matter (CDM) model of cosmology makes predictions about how galaxies cluster and, in many cases, collide and merge,” says Andrew Hopkins, a GAMA team member. “Our measurements of the speeds of galaxies will reveal the distribution of dark matter, and enable us to test the CDM model.”
A project to produce more than double the number of galaxy distance measurements than all other previous surveys, could lead to an explanation of one of nature’s biggest mysteries—whether dark energy, an invisible force that opposes gravity, has remained constant or changed since the beginning of time.