Tag Archives: SkyMapper

Prized astronomer continues to contribute

He received the first ever Malcolm McIntosh Prize for Physical Scientist of the Year in 2000, then the Shaw Prize in Astronomy in 2006, the Gruber Cosmology Prize in 2007 and the Nobel Prize for Physics in 2011—it’s been a satisfying progression for Brian Schmidt, professor of astronomy at the Australian National University, and for Australian science. Schmidt led one of two research teams that determined that the expansion of the Universe is accelerating.

Brian Schmidt, the Malcolm McIntosh Physical Scientist of the Year 2011. Credit: ANU
Brian Schmidt, the Malcolm McIntosh Physical Scientist of the Year 2000 and 2011 Physics Nobel Laureate. Credit: ANU

But winning awards does not mean he’s resting on his laurels. Apart from countless invitations to speak, Brian has his hands full with commissioning SkyMapper, a new optical telescope equipped with Australia’s largest digital camera at 268 megapixels. And he’s also involved in two significant new facilities pioneering technology to be used in the Square Kilometre Array (SKA), the world’s largest radio telescope: the Murchison Widefield Array and the Australian SKA Pathfinder. And in his spare time, he’s working on one of the next generation of optical telescopes, the Giant Magellan Telescope.
Continue reading Prized astronomer continues to contribute

Galactic archaeology— digging into the Milky Way’s past

ASTRONOMERS ARE HUNTING ‘FOSSIL’ STARS FROM GALAXIES DEVOURED BY THE MILKY WAY CREDIT: HUBBLE HERITAGE TEAM (AURA/STSCI/NASA/ESA)
ASTRONOMERS ARE HUNTING ‘FOSSIL’ STARS FROM GALAXIES DEVOURED BY THE MILKY WAY CREDIT: HUBBLE HERITAGE TEAM (AURA/STSCI/NASA/ESA)

Ken Freeman is hunting for fossils. But he’s not looking for old bones—he’s exploring the very origin and history of our Milky Way galaxy.

Conventional theory says that our galaxy grew big by engulfing smaller ones. If this is correct, stars from the original galaxies should be still identifiable within the main mass of stars via several tell-tale signs, from unusual velocities to spectral types. These stellar fossils would point to the galaxy’s birth and growth. Continue reading Galactic archaeology— digging into the Milky Way’s past

SkyMapper’s 268-megapixel camera

On a mountaintop in northern New South Wales sits a new telescope equipped with Australia’s largest digital camera. The Australian National University’s (ANU) SkyMapper facility has been established at Siding Spring Observatory to conduct the most comprehensive optical survey yet of the southern sky.

Fully automated, the telescope is measuring the shape, brightness and spectral type of over a billion stars and galaxies, down to one million times fainter than the eye can see.

SKYMAPPER AT SIDING SPRING, NORTHERN NEW SOUTH WALES. CREDIT: AUSTRALIAN NATIONAL UNIVERSITY.

Continue reading SkyMapper’s 268-megapixel camera

Australian company brings the Universe within range

THIS SATELLITE LASER RANGING STATION MANAGED BY GEOSCIENCE AUSTRALIA AT MOUNT STROMLO OBSERVATORY NEAR CANBERRA WAS BUILT AND IS OPERATED BY EOS. CREDIT: CRAIG ELLIS.
THIS SATELLITE LASER RANGING STATION MANAGED BY GEOSCIENCE AUSTRALIA AT MOUNT STROMLO OBSERVATORY NEAR CANBERRA WAS BUILT AND IS OPERATED BY EOS. CREDIT: CRAIG ELLIS.

An Australian company, Electro-Optic Systems (EOS), is one of the biggest developers of large, high-precision, optical research telescopes in the world. In fact, EOS has designed, built and installed the SkyMapper telescope and its enclosure at Siding Spring Observatory in New South Wales.

The headquarters of EOS is at the Mt Stromlo Observatory near Canberra, but its reach is international. Equipment the company has installed include the University of Tokyo’s two-metre telescope at Mount Haleakala, Hawai’i, a two-metre telescope in the Himalayas for the Indian Institute of Astrophysics, and the 2.4 ­metre Advanced Planet Finder (APF) at the University of California’s Lick Observatory. Continue reading Australian company brings the Universe within range

From mapping a continent to surveying the Universe

SIDING SPRING MOUNTAIN’ IS HOME TO OVER A DOZEN AUSTRALIAN AND INTERNATIONAL TELESCOPES. CREDIT: FRED KAMPHUES.
SIDING SPRING MOUNTAIN’ IS HOME TO OVER A DOZEN AUSTRALIAN AND INTERNATIONAL TELESCOPES. CREDIT: FRED KAMPHUES.

Australia’s first observatory was built on the shores of Sydney Harbour by Lieutenant William Dawes of the First Fleet, on the point where the southern pylon of the Sydney Harbour Bridge now stands. Optical astronomy was essential for maritime navigation, and for providing precise location measurements for surveying the new continent.

The country’s first major observatory was established in 1821 at Parramatta by Thomas Brisbane, Governor of New South Wales and, later, President of the Royal Society. The observatory was used to discover and record the galaxy NGC 5128—a now much-studied galaxy that radio astronomers know as Centaurus A, within which sits a super-massive black hole (see Recording the impact of a super-massive black hole). Continue reading From mapping a continent to surveying the Universe

On the hunt for dark energy

Tamara Davis

University of Queensland / University of Copenhagen

In 1998 astronomers made an astonishing discovery-the expansion of the Universe is not happening at a steady rate, nor is it slowing down toward eventual collapse. Instead, it is accelerating. The discovery required a complete rethink of the standard model used to explain how the Universe works.

Tamara Davis, University of Queensland / University of Copenhagen (Photo credit: timothyburgess.net)

“Now we know that stars, planets, galaxies and all that we can see make up just four per cent of the Universe,” says Tamara Davis, a University of Queensland astrophysicist.

“About 23 per cent is dark matter. The balance is thought to be dark energy, which we know very little about.”

Continue reading On the hunt for dark energy