For the one in five Australians of working age suffering from serious chronic pain, the options for relief are strictly limited. There’s morphine and . . . well, there’s morphine. But now one of the most powerful toxins in the natural world—the venom of marine cone snails—offers hope of a future free of pain and addiction, say researchers at RMIT University.
“The big problems with morphine are addictiveness and the fact that people develop a tolerance to it,” says Professor David Adams, director of the RMIT Health Innovations Research Institute. “With the painkillers derived from cone snail venom, we don’t have those problems. People don’t develop tolerance, and they don’t get hooked.
New computer models are challenging the conventional wisdom in marine science.
These models have revealed for example that: large populations of jellyfish and squid indicate a marine ecosystem in trouble; not all fish populations increase when fishing is reduced—some species actually decline; and, sharks and tuna can use jellyfish as junk food to see them through lean periods.
The models were developed by the 2007 Science Minister’s Life Scientist of the Year, Dr Beth Fulton, a senior research scientist at CSIRO Marine and Atmospheric Research in Hobart. Continue reading Virtual management of the world’s oceans→
Researchers in the School of Geosciences at the University of Sydney have developed a computer package that lets scientists record and study the Earth over geological time.
Their GPlates software, which they describe as “Google Earth with a time-slider,” contains powerful tools for modelling geological processes. Yet it is simple enough to use in schools or at home, and is freely available. By combining data on continental motion, fossils and sediments, for example, scientists can analyse changes in geography, ocean currents and climate over geological time. Continue reading Slide back in time and see the Himalayas form→
Seabirds on one of Australia’s remotest islands have plastic in their stomachs.
A recent survey found more than 95 per cent of the migratory flesh-footed shearwaters nesting on Lord Howe Island, between Australia and the northern tip of New Zealand, had swallowed plastic garbage.
As if that wasn’t bad enough, plastic has been shown to bind poisonous pollutants. As a result, some shearwaters were found with concentrations of mercury more than 7,000 times the level considered toxic.
Rising carbon dioxide in the atmosphere is causing ocean acidification, leading to adverse impacts on shell-forming organisms such as sea urchins, cold water corals and plankton.
Ocean acidification, caused by increasing amounts of atmospheric carbon dioxide dissolving in the ocean, poses a serious threat to marine ecosystems.
Increasing acidity affects the ability of some planktonic organisms to form shells, and is expected to change the species composition of plankton, with flow-on effects to higher levels of the food web.
The University of Melbourne’s Departments of Biochemistry and Molecular Biology, and Pharmacology have over recent years identified cone shell venom as a potential treatment for chronic pain in humans.
Researchers continue to develop the research into a commercialised product. One of the venom peptides identified is currently in phase two of clinical trials.
Southern bluefin tuna can’t even have a quiet snack without CSIRO researchers knowing. They’ve developed a way of tracking when the tuna feed and also where, at what depth, and the temperature of the surrounding water.
Dr Sophie Bestley and her colleagues at CSIRO’s Wealth from Oceans National Research Flagship surgically implant miniaturised electronic ’data-storage’ tags into juvenile fishes off the coast of southern Australia.
Hundreds of Aussie science achievements that you can share in speeches, posts and publications