Technology that ‘de-twinkles’ stars is being used to pinpoint manmade space junk and avoid devastating collisions like those dramatised in the movie Gravity.
Australian company Electro Optic Systems, based on Mount Stromlo in Canberra, is using adaptive optics and pulsing lasers to locate detritus too small for conventional radar. Ultimately, the company hopes to use similar lasers to remove the debris from orbit.
Adaptive optics helps the pulsing lasers to cut through the Earth’s atmospheric turbulence, which distorts and scatters light, by using a second orange-coloured laser to illuminate sodium atoms in the upper atmosphere.
Monster black holes lurking in the centres of galaxies are hungrier than previously thought, Melbourne scientists have discovered.
Astrophysicist Alister Graham and his team at Swinburne University have revealed that these so-called supermassive black holes consume a greater portion of their galaxy’s mass the bigger the galaxy gets. The discovery overturns the longstanding belief that these supermassive black holes are always a constant 0.2 per cent of the mass of all the other stars in their galaxy.
Over aeons of time cosmic gas comes together, stars begin to form, supernovae explode, galaxies collide. And computational astronomers can watch it all unfold inside a supercomputer. That’s the kind of work post-doctoral fellows Rob Crain and Greg Poole are doing at the Swinburne Centre for Astrophysics and Supercomputing. Continue reading Supercomputers bring theory to life→
If the Milky Way did grow by swallowing up smaller galaxies, then another team suspects it knows where in the Milky Way some of those alien stars are hiding.
Duncan Forbes of Swinburne University of Technology and his Canadian colleague Terry Bridges are using Hubble Space Telescope data to identify clusters of alien stars, using the fact that their age and chemical composition differs from their neighbours.
Scientific puzzles don’t come much bigger than these. How old is the Universe? How big is it? And what is its ultimate fate?
A single number, Hubble’s constant, is the key that can unlock all of those questions, but it’s a number that has proved notoriously hard to accurately measure. Hubble’s constant is the rate at which the Universe is expanding. The first team to accurately make that measurement was co-led by Jeremy Mould, now a professor at Swinburne University of Technology and professorial fellow at the University of Melbourne. Continue reading Measuring the Universe from start to finish→
Hundreds of Aussie science achievements that you can share in speeches, posts and publications