Making waves in a wind tunnel

We know the Southern Ocean plays a big role in our climate, but there’s much to learn about how and where clouds form over the sea, how they influence global temperatures, and how the wind affects cloud formation and how much carbon dioxide our oceans can absorb.

A wave pool in a wind tunnel: Professor Jason Monty’s work on air-sea interaction will inform climate models and more. Credit: Joe Vittorio
A wave pool in a wind tunnel: Professor Jason Monty’s work on air-sea interaction will inform climate models and more.
Credit: Joe Vittorio

Now a 60m ‘wave pool in a wind tunnel’ built by Associate Professor Jason Monty is allowing researchers from The University of Melbourne, Swinburne, and Monash University to find out.

“We know that small eddies at the surface of the ocean affect how evaporation occurs and gasses are exchanged, but this turbulence is not included in climate models, as no one has been able to measure it,” Jason says.

Continue reading Making waves in a wind tunnel

Australian Academy of Science medals

Harry Messel has been a powerful force in science education—from the Physics Foundation to textbooks and his establishment of International Science Schools. He was awarded the Academy Medal.

Simon McKeon is a prominent business leader and philanthropist who has made extensive contributions to Australian science and innovation including chairing the CSIRO Board and the agenda-setting McKeon report into medical research in Australia. He was awarded the Academy Medal.

The life and death of cells: Jerry Adams has advanced understanding of cancer development, particularly of genes activated by chromosome translocation in lymphomas. By clarifying how the Bcl-2 protein family controls the life and death of cells, he and his colleagues at the Walter and Eliza Hall Institute of Medical Research have galvanised the development of a promising new class of anti-cancer drugs. Jerry was awarded the 2014 Macfarlane Burnet Medal. Continue reading Australian Academy of Science medals

Shared data reveals radio bursts, and a lunch break

In May 2014, a team led by PhD candidate Emily Petroff from Swinburne University was the first to see ‘fast radio bursts’ (FRBs) live, using the Parkes radio telescope in central New South Wales. The search was triggered by signals found in recycled data. They also discovered that someone was opening the kitchen microwave.

Continue reading Shared data reveals radio bursts, and a lunch break

Monster black holes supersize their galactic greed

Monster black holes lurking in the centres of galaxies are hungrier than previously thought, Melbourne scientists have discovered.

Artist’s impression of a star being pulled into a black hole. Credit: Gabriel Perez Diaz

Astrophysicist Alister Graham and his team at Swinburne University have revealed that these so-called supermassive black holes consume a greater portion of their galaxy’s mass the bigger the galaxy gets. The discovery overturns the longstanding belief that these supermassive black holes are always a constant 0.2 per cent of the mass of all the other stars in their galaxy.

Continue reading Monster black holes supersize their galactic greed

Insect wings beat superbugs

Nanoscale spikes on dragonfly wings are inspiring materials that kill bacteria, including deadly antibiotic-resistant golden staph (Staphylococcus aureus).

Wandering percher dragonfly, Diplacodes bipunctata. Credit: Jean, via Encyclopedia of Life (CC BY-NC)

Elena Ivanova and her fellow researchers at Swinburne University of Technology were studying self-cleaning surfaces in nature when they discovered bacteria being killed on the wings of the clanger cicada, Psaltoda claripennis, a species mostly found in Queensland.

The secret seemed to lie in millions of tiny rounded spikes, or nanopillars, each a thousand times smaller than the width of a human hair.

Continue reading Insect wings beat superbugs

More efficient solar cells with quantum dots

Dr Baohua Jia

Swinburne University of Technology, Melbourne, Australia

The global race to develop high efficiency, low cost solar energy is fierce. And Baohua Jia and her colleagues are front runners.

Click image for hi-res. Photo: Dr Baohua Jia, Swinburne University of Technology (credit: L’Oréal Australia/sdpmedia.com.au)
Click image for hi-res. Photo: Dr Baohua Jia, Swinburne University of Technology (credit: L’Oréal Australia/sdpmedia.com.au)

Conventional solar cells are efficient, but thick and expensive. Baohua and her colleagues imagine a future when solar cells are so thin and cheap that city skyscrapers will be powered by a coating on their glass. But at present such thin-film solar cells are not efficient enough for general use.

Using her knowledge of nanotechnology and optics, Baohua and her colleagues have already created thin-film solar cells that are more than 20 per cent more efficient than those of her competitors. They have already lodged two patents.

But Baohua thinks she can do better. And that will be the focus of the work assisted by her $25,000 L’Oréal Australia & New Zealand For Women in Science Fellowship.

Continue reading More efficient solar cells with quantum dots

PlayStation graphics chips drive astronomy supercomputer

MATTHEW BAILES IN THE SWINBURNE VIRTUAL REALITY THEATRE IN FRONT OF AN IMAGE OF THE DOUBLE PULSAR DISCOVERED WITH CSIRO’S PARKES RADIO TELESCOPE. CREDIT: SWINBURNE UNIVERSITY OF TECHNOLOGY.
MATTHEW BAILES IN THE SWINBURNE VIRTUAL REALITY THEATRE IN FRONT OF AN IMAGE OF THE DOUBLE PULSAR DISCOVERED WITH CSIRO’S PARKES RADIO TELESCOPE. CREDIT: SWINBURNE UNIVERSITY OF TECHNOLOGY.

The technology used in your PC or PlayStation is also helping drive a revolution in radio astronomy—the replacement of custom-built hardware with flexible software and data solutions.

“Hardware solutions for radio astronomy have been evolving, but computer power has been evolving much faster,” says Matthew Bailes, from the Swinburne Centre for Astrophysics and Supercomputing. The Centre has developed software systems that are now used in Australia and overseas. Continue reading PlayStation graphics chips drive astronomy supercomputer

Supercomputers bring theory to life

A DEPICTION OF THE DISTRIBUTION OF MATTER IN AN OBJECT NEARLY TEN MILLION LIGHT YEARS ACROSS AND A THOUSAND TIMES THE MASS OF THE MILKY WAY. THOUSANDS OF THESE EXIST IN THE OBSERVABLE UNIVERSE. CREDIT: GREG POOLE, SWINBURNE UNIVERSITY OF TECHNOLOGY.
A DEPICTION OF THE DISTRIBUTION OF MATTER IN AN OBJECT NEARLY TEN MILLION LIGHT YEARS ACROSS AND A THOUSAND TIMES THE MASS OF THE MILKY WAY. THOUSANDS OF THESE EXIST IN THE OBSERVABLE UNIVERSE. CREDIT: GREG POOLE, SWINBURNE UNIVERSITY OF TECHNOLOGY.

Over aeons of time cosmic gas comes together, stars begin to form, supernovae explode, galaxies collide. And computational astronomers can watch it all unfold inside a supercomputer. That’s the kind of work post-doctoral fellows Rob Crain and Greg Poole are doing at the Swinburne Centre for Astrophysics and Supercomputing. Continue reading Supercomputers bring theory to life

Stellar immigration

DUNCAN FORBES IS IDENTIFYING ALIEN STARS. CREDIT: PAUL JONES.

If the Milky Way did grow by swallowing up smaller galaxies, then another team suspects it knows where in the Milky Way some of those alien stars are hiding.

Duncan Forbes of Swinburne University of Technology and his Canadian colleague Terry Bridges are using Hubble Space Telescope data to identify clusters of alien stars, using the fact that their age and chemical composition differs from their neighbours.

Continue reading Stellar immigration

Measuring the Universe from start to finish

THE HUBBLE SPACE TELESCOPE CAN BE USED TO TAKE MEASUREMENTS THAT WILL HELP ANSWER SOME OF THE BIGGEST QUESTIONS ABOUT THE UNIVERSE. CREDIT: NASA/STSCI.
THE HUBBLE SPACE TELESCOPE CAN BE USED TO TAKE MEASUREMENTS THAT WILL HELP ANSWER SOME OF THE BIGGEST QUESTIONS ABOUT THE UNIVERSE. CREDIT: NASA/STSCI.

Scientific puzzles don’t come much bigger than these. How old is the Universe? How big is it? And what is its ultimate fate?

A single number, Hubble’s constant, is the key that can unlock all of those questions, but it’s a number that has proved notoriously hard to accurately measure. Hubble’s constant is the rate at which the Universe is expanding. The first team to accurately make that measurement was co-led by Jeremy Mould, now a professor at Swinburne University of Technology and professorial fellow at the University of Melbourne. Continue reading Measuring the Universe from start to finish