The complex life of coral

Dr Tracy Ainsworth’s research is changing our understanding of the tiny coral animals that built Australia’s iconic Great Barrier Reef. Tracy and her colleagues at James Cook University in Townsville have found that the process of coral bleaching is a far more complex than previously thought, and begins at temperatures lower than previously considered. And she’s done so by applying skills in modern cell biology which she picked up working in neuroscience laboratories.

Tracy Ainsworth, James Cook University. Credit: L’Oréal Australia/sdpmedia.com.au
Tracy Ainsworth, James Cook University. Credit: L’Oréal Australia/sdpmedia.com.au

Her achievements won her a $20,000 L’Oréal Australia For Women in Science Fellowship in 2011, which she is using to study the low light, deep water reefs that underlie tropical surface reefs at depths of 100 metres or more.
Continue reading The complex life of coral

Clues to switching off your blood clots

Our blood has a built-in system for breaking up heart attack-inducing clots—and we’re a step closer to drugs that could switch that system on at will.

The molecular structure of plasminogen Credit: Prof James Whisstock/Australian Synchrotron
The molecular structure of plasminogen. Credit: Prof James Whisstock/Australian Synchrotron

Australian researchers have won the decades-long race to define the structure of plasminogen—a protein whose active form quickly dissolves blood clots.

The current crop of clot-busting drugs have many side effects, including bleeding and thinning of the blood, so harnessing the body’s own mechanism for clearing clots could offer a better way. Continue reading Clues to switching off your blood clots

Health check for live cells

Unhealthy cells are less “squishy” than their healthy counterparts. That difference is used by a small device developed by engineers at Monash University to test living blood cells for diseases, such as malaria and diabetes. The device can then sort the cells for future culturing and experimentation without harming them.

A simulation of a red blood cell being trapped and strained for measurement in the Monash device. Credit: Yann Henon, Andreas Fouras & Greg Sheard
A simulation of a red blood cell being trapped and strained for measurement in the Monash device. Credit: Yann Henon, Andreas Fouras & Greg Sheard

The patented “lab-on-a-chip” and accompanying control system has attracted considerable interest from pharmaceutical companies, according to co-inventor Dr Greg Sheard of the Department of Mechanical and Aerospace Engineering. Continue reading Health check for live cells

Frog peptides versus superbugs

Neutrons and native frogs are an unlikely but dynamic duo in the battle against antibiotic-resistant bacteria, commonly known as superbugs, recent research has shown.

The growling grass frog’s skin secretions include disease fighting peptides. Credit: Craig Cleeland

The skin secretions of the Australian green-eyed and growling grass frogs contain peptides (small proteins) that help frogs fight infection. Researchers hope these peptides will offer a new line of defence against a range of human bacterial pathogens, including methicillin-resistant Staphylococcus aureus (MRSA).
Continue reading Frog peptides versus superbugs

Bionic eye researchers take a shine to diamond

Electrodes made of diamond are helping Melbourne researchers build a better bionic eye.

David Garrett’s Melbourne team is designing diamond electrodes to replace light-sensing parts of the retina. Credit: David J. Garrett
David Garrett’s Melbourne team is designing diamond electrodes to replace light-sensing parts of the retina. Credit: David J. Garrett

Some types of blindness are caused by diseases where the light-sensing part of the retina is damaged, but the nerves that communicate with the brain are still healthy—for example, retinitis pigmentosa and age-related macular degeneration.

Dr David Garrett and his colleagues at the Melbourne Materials Institute at the University of Melbourne are using diamond to build electrodes that can replace the light-sensing function of the retina: they deliver an electrical signal to the eye via a light-sensing camera.

Continue reading Bionic eye researchers take a shine to diamond

Understanding the genetic contribution to epilepsy

Twenty years ago doctors thought epilepsy was caused by injuries or tumours but, thanks to the work of a Melbourne paediatrician, we now know that there’s a large genetic factor.

Ingrid Scheffer with one of her young patients Credit: SDP/ L’Oréal
Ingrid Scheffer with one of her young patients. Credit: SDP/ L’Oréal

Prof Ingrid Scheffer, a paediatric neurologist at the Florey Neuroscience Institutes and the University of Melbourne, has spent the last 20 years looking at the genetics of epilepsy, particularly in children.

We now know that genes play a large role and that’s opened the way to better diagnosis, treatment, counselling, and potential cures.

In particular, Ingrid’s team and her collaborators at the University of South Australia have discovered that one kind of inherited infant epilepsy is due to a single letter change in the genetic code.

Continue reading Understanding the genetic contribution to epilepsy

Bionic pioneer explores how we’re wired for sound

Prof Graeme Clark changed the way we thought about hearing when he gave Rod Saunders the first cochlear implant in 1978—now he might just do it again.

3-D reconstruction of the left implanted cochlea in the brain of Rod Saunders. Credit: G. Clark; J.C.M. Clark.; M. Clarke; P. Nielsen- NICTA & Dept Otolaryngology, Melbourne University

Back then, Graeme brought together a team of engineers and medical personnel; now he’s trying to reveal exactly how the brain is wired for sound—by bringing together software specialists and experts on materials that can interface with the brain.

“We’re aiming to get closer to ‘high fidelity’ hearing for those with a cochlear implant,” says Graeme, now distinguished researcher at NICTA and laureate professor emeritus at the University of Melbourne. “This would mean they could enjoy the subtlety of music or the quiet hum of a dinner party.”

Continue reading Bionic pioneer explores how we’re wired for sound

Australian science’s place in Asia

Australia’s scientists are among the most productive in the region. That’s the picture that emerges from the Nature Publishing Index 2011 Asia-Pacific released in March 2012

AUSTRALIA RANKS THIRD IN THE ASIA-PACIFIC REGION IN TERMS OF PUBLICATIONS IN NATURE GROUP JOURNALS. CREDIT: NASA VISIBLEEARTH.NASA.GOV

Australia ranks second only to Singapore in terms of science output per capita and per scientist in the Index, which measures the publication of research articles in Nature research journals by Asia-Pacific nations and institutions. Singapore and Australia are also first and second in the Asia-Pacific respectively in terms of GDP per capita. Continue reading Australian science’s place in Asia

New chlorophyll a gateway to better crops

A chance finding has led to the first new chlorophyll discovered in 67 years, opening up possibilities for biofuel and food crops to use sunlight more efficiently.

2011 Life Scientist of the Year Min Chen. Credit: Prime Minister's Science Prizes/Bearcage
2011 Life Scientist of the Year Min Chen. Credit: Prime Minister’s Science Prizes/Bearcage

Continue reading New chlorophyll a gateway to better crops

New tool for better breast cancer detection

Queensland scientists are helping radiologists to spot the more subtle signs of breast cancer, using computer tools and magnetic resonance imaging (MRI).

Photo: Contrast-enhanced MRI of a breast. Credit: Yaniv Gal
Photo: Contrast-enhanced MRI of a breast. Credit: Yaniv Gal

Currently MRI allows radiologists to detect lumps or other growths by creating a 3D anatomical image of the breast.

Prof Stuart Crozier and his team at the University of Queensland have developed a computer tool that improves MRI detection by spotting more subtle indicators of cancer.

“When cancers are just starting to form, they form abnormal blood vessels very early, to feed their rapid cell division,” Stuart says.

“By seeing how certain contrast agents move through the tissue, we can pick up the formation of these blood vessels.”

Photo: Research Assistant Michael Wildermoth works with the software that shows how certain contrast agents move through breast tissue. Credit: Kim Nunes
Photo: Research Assistant Michael Wildermoth works with the software that shows how certain contrast agents move through breast tissue. Credit: Kim Nunes

This works towards solving two issues with conventional MRIs.

First, it should reduce the number of false positive results and therefore the number of women put through biopsies of benign tumours.

Second, this should catch tumours earlier, not just when tumours are big enough to discern visually.

“The goal is to assist radiologists to identify areas of cancer risk that may not be obvious on conventional images,” Stuart says.

Stuart, a Fellow of the Australian Academy for Technological Sciences and Engineering (ATSE), was recently presented with a 2012 Clunies Ross Award for his contributions to the engineering of magnetic resonance imaging (MRI) technology.

The research, funded as an Australian Research Council’s Discovery Project, is now undergoing trials with 140 women at private radiology firm Queensland X-ray.

Photo: Contrast-enhanced MRI of a breast.
Credit: Yaniv Gal
Photo: Research Assistant Michael Wildermoth works with the software that shows how certain contrast agents move through breast tissue.
Credit: Kim Nunes

University of Queensland, Stuart Crozier, stuart@itee.uq.edu.au, www.itee.uq.edu.au