Could a neutron beam help stop train derailments?

Scientists are using neutron radiation to look inside solid steel and analyse the stresses within rail tracks. This research will ultimately improve the safety and operational and repair efficiency of heavy-haul railways.

The wheels of heavily laden trains place considerable rolling-contact loading on rail tracks. The heavy loads can change the material properties near the running surface and within the railhead—causing “fatigue”. A number of serious incidents, including derailments, have been attributed to rail failures resulting from rolling-contact fatigue and accumulated residual stress.

Bragg Institute instrument scientist Dr Vladimir Luzin is looking at fatigue in insulated rail joints (IRJs) within a research project initiated by the Cooperative Research Centre for Rail Innovation. IRJs are an integral part of rail track systems, but they are also weak points, and their replacement is the single largest track maintenance cost in New South Wales, apart from ballast work.

“When a rail comes out of a factory it has already some residual stress,” explains Vladimir. “Now we are looking at the atomic level to see how these stresses develop through the life of the rail joints.”

Vladimir uses neutron diffraction to see how residual stresses evolve through different production steps and during service. The beauty of neutrons is that they can penetrate steel—unlike X-rays—and they can be used to map the stresses inside the rail components non-destructively.

Manufacturers and operators want to control and minimise these stresses. This research, backed by modellers and metallurgists, will help industry partners cut costs, modify production methods and develop rails of a quality and strength that can handle increasing loads.

Bragg Institute, Australian Nuclear Science and Technology Organisation, Vladimir Luzin, Tel: +61 2 9717 7262, vladimir.luzin@ansto.gov.au,  www.ansto.gov.au

Bionic pioneer explores how we’re wired for sound

Prof Graeme Clark changed the way we thought about hearing when he gave Rod Saunders the first cochlear implant in 1978—now he might just do it again.

3-D reconstruction of the left implanted cochlea in the brain of Rod Saunders. Credit: G. Clark; J.C.M. Clark.; M. Clarke; P. Nielsen- NICTA & Dept Otolaryngology, Melbourne University

Back then, Graeme brought together a team of engineers and medical personnel; now he’s trying to reveal exactly how the brain is wired for sound—by bringing together software specialists and experts on materials that can interface with the brain.

“We’re aiming to get closer to ‘high fidelity’ hearing for those with a cochlear implant,” says Graeme, now distinguished researcher at NICTA and laureate professor emeritus at the University of Melbourne. “This would mean they could enjoy the subtlety of music or the quiet hum of a dinner party.”

Continue reading Bionic pioneer explores how we’re wired for sound

Birds, bees, robots and flying

He isn’t a pilot, but few people would know more about ways of navigating while flying than Prof Mandyam Srinivasan (Srini) of the Queensland Brain Institute. And he’s steadily finding out more.

Srinivasan works on bee navigation: here he is in the All-Weather Bee Flight Facility at the Queensland Brain Institute (QBI) Credit: Dee McGrath/QBI
Srinivasan works on bee navigation: here he is in the All-Weather Bee Flight Facility at the Queensland Brain Institute (QBI). Credit: Dee McGrath/QBI

Initially known for his work in bees, since receiving the Prime Minister’s Prize for Science in 2006, Srini has shown that birds and insects use a similar system of visual guidance to prevent themselves from crashing into trees when flying through dense forest.

Continue reading Birds, bees, robots and flying

Galactic shutterbug

A new instrument at the Australian Astronomical Observatory (AAO) can sample the light coming from hundreds of galaxies per night—which can tell us new things about the universe.

Astronomer Sam Richards sitting in the prime focus cage at the Anglo-Australian Telescope, where the SAMI instrument usually sits. Credit: Jon Lawrence
Astronomer Sam Richards sitting in the prime focus cage at the Anglo-Australian Telescope, where the SAMI instrument usually sits. Credit: Jon Lawrence

Sydney-AAO Multi-object Integral field spectrograph (SAMI) can look at up to 100 galaxies in a night, because it can look at 60 different regions in each of 13 different galaxies, all at once.

But most observatories around the world can only do one galaxy at a time.
Continue reading Galactic shutterbug

Supercomputer probes cancer crisis point

The long-term survival chances of patients with breast cancer plummet if the cancer recurs or spreads to other parts of the body in the process known as metastasis.

Breast cancer cells visualised with antibodies recognising E-cadherin (red) or vimentin (green). The cell nuclei are visualised with a DNA-binding stain (blue). Credit: Cletus Pinto & Rhiannon Coulson, St Vincent’s Institute

So the National Breast Cancer Foundation recently funded a five-year, $5 million National Collaborative Research Program to investigate metastasis and discover potential drugs to stop or slow it. The EMPathy Breast Cancer Network program was also charged with finding ways of diagnosing metastasis before it occurs. The research is highly dependent on the latest sequencing technology and demands the massive computer power and sophisticated data handling techniques of modern bioinformatics.
Continue reading Supercomputer probes cancer crisis point

Australian science’s place in Asia

Australia’s scientists are among the most productive in the region. That’s the picture that emerges from the Nature Publishing Index 2011 Asia-Pacific released in March 2012

AUSTRALIA RANKS THIRD IN THE ASIA-PACIFIC REGION IN TERMS OF PUBLICATIONS IN NATURE GROUP JOURNALS. CREDIT: NASA VISIBLEEARTH.NASA.GOV

Australia ranks second only to Singapore in terms of science output per capita and per scientist in the Index, which measures the publication of research articles in Nature research journals by Asia-Pacific nations and institutions. Singapore and Australia are also first and second in the Asia-Pacific respectively in terms of GDP per capita. Continue reading Australian science’s place in Asia

New tool for better breast cancer detection

Queensland scientists are helping radiologists to spot the more subtle signs of breast cancer, using computer tools and magnetic resonance imaging (MRI).

Photo: Contrast-enhanced MRI of a breast. Credit: Yaniv Gal
Photo: Contrast-enhanced MRI of a breast. Credit: Yaniv Gal

Currently MRI allows radiologists to detect lumps or other growths by creating a 3D anatomical image of the breast.

Prof Stuart Crozier and his team at the University of Queensland have developed a computer tool that improves MRI detection by spotting more subtle indicators of cancer.

“When cancers are just starting to form, they form abnormal blood vessels very early, to feed their rapid cell division,” Stuart says.

“By seeing how certain contrast agents move through the tissue, we can pick up the formation of these blood vessels.”

Photo: Research Assistant Michael Wildermoth works with the software that shows how certain contrast agents move through breast tissue. Credit: Kim Nunes
Photo: Research Assistant Michael Wildermoth works with the software that shows how certain contrast agents move through breast tissue. Credit: Kim Nunes

This works towards solving two issues with conventional MRIs.

First, it should reduce the number of false positive results and therefore the number of women put through biopsies of benign tumours.

Second, this should catch tumours earlier, not just when tumours are big enough to discern visually.

“The goal is to assist radiologists to identify areas of cancer risk that may not be obvious on conventional images,” Stuart says.

Stuart, a Fellow of the Australian Academy for Technological Sciences and Engineering (ATSE), was recently presented with a 2012 Clunies Ross Award for his contributions to the engineering of magnetic resonance imaging (MRI) technology.

The research, funded as an Australian Research Council’s Discovery Project, is now undergoing trials with 140 women at private radiology firm Queensland X-ray.

Photo: Contrast-enhanced MRI of a breast.
Credit: Yaniv Gal
Photo: Research Assistant Michael Wildermoth works with the software that shows how certain contrast agents move through breast tissue.
Credit: Kim Nunes

University of Queensland, Stuart Crozier, stuart@itee.uq.edu.au, www.itee.uq.edu.au

Yeast to make jet fuels

Yeast to make jet fuels
Dr Claudia Vickers is leading a team looking at modifying baker’s yeast to make aviation fuel. Credit: AIBN.

Baker’s yeast could soon be turning sugar cane into jet fuel. Dr Claudia Vickers from the Australian Institute for Bioengineering and Nanotechnology (AIBN) at the University of Queensland leads a team studying strains which already produce ethanol, industrial chemicals and pharmaceuticals.

The researchers want to use the yeast strains S. cerevisiae to make isoprenoids, chemicals traditionally used to make pharmaceuticals and food additives, but which can also serve as fuel.

The idea is to give the yeast new functions, so they can consume sucrose from cane sugar and produce isoprenoid products, which can be used to replace or supplement traditional jet fuel, without modifying existing aircraft engines or infrastructure.

Claudia’s lab was originally looking at the gut bacteria E. coli, which could also be used to produce isoprenoids, but the yeast is now looking more promising.

Other research groups at The University of Queensland and James Cook University are looking to develop aviation fuel from algae and the oilseed tree Pongamia, both of which can be grown without competing with traditional food crops for land or water.

The University’s sustainable aviation fuel initiative has attracted several backers including Boeing, Virgin Australia, Mackay Sugar, Brisbane-based IOR Energy, and the US-based green energy company Amyris. It is funded by the Queensland State Government.

Photo: Dr Claudia Vickers is leading a team looking at modifying baker’s yeast to make aviation fuel.
Credit: AIBN

Australian Institute for Bioengineering & Nanotechnology, UQ, Claudia Vickers, Tel: +61 7 334 63158, c.vickers@uq.edu.au, www.aibn.uq.edu.au

Crashing helicopters for safety

Mathew Joosten crashes several helicopters a day—without any deaths or injury. He uses computer simulation.

Crashing helicopters can now be done from the safety of the keyboard. Credit: ACSCRC
Crashing helicopters can now be done from the safety of the keyboard. Credit: ACSCRC

A research student of the Cooperative Research Centre for Advanced Composite Structures, Mr Joosten has designed ‘virtual crash test’ software to help accelerate the development of safety systems.

Continue reading Crashing helicopters for safety

Putting a cap on fatigue

Drivers of trucks, dozers, graders and excavators at Australian mines could soon be saved from the risks of fatigue by their headgear.

Putting a cap on fatigue
The SmartCap protects against fatigue. Credit: CRC Mining

Incidents on mine sites caused by tiredness are a significant cause of injuries and deaths, and cost the industry hundreds of millions of dollars in lost production and accidents each year. So Dr Daniel Bongers at the Cooperative Research Centre for Mining (CRCMining) in Brisbane has invented a SmartCap, fitted with sophisticated sensors which can “read” the brain’s nerve activity through hair and detect the level of fatigue of the wearer.

Continue reading Putting a cap on fatigue