Small Australian sharks have been exposed as bigger homebodies than previously thought, in a study that took an existing chemical tracking technique and made it work for Great Barrier Reef sharks.
The study found that the travel history of the Australian sharpnose shark was written in their blood—with chemical ‘fin-prints’ showing they tended to stay within smaller areas than previously believed.
“Small-bodied sharks that are both predator and prey, such as the Australian sharpnose, may be particularly important links between food webs,” says lead researcher Dr Sam Munroe, who studied the sharks while at James Cook University in Townsville.
“Information on their movements can improve our understanding of how the ecosystems function, while also helping us predict species most at risk from the impacts of a changing environment.”
Continue reading Blood reveals Great Barrier Reef sharks as homebodies