Mopping up gases

Deanna D’Alessandro

University of Sydney

A sponge that filters hot air and captures carbon dioxide

Deanna D’Alessandro, The University of Sydney (credit: L’Oréal Australia/sdpmedia.com.au)
Deanna D’Alessandro, The University of Sydney (credit: L’Oréal Australia/sdpmedia.com.au)

We need better ways of capturing carbon dioxide emissions from power stations and industry. And we won’t be using hydrogen cars until we’ve developed practical ways of carrying enough hydrogen gas in the fuel tank. Deanna D’Alessandro’s understanding of basic chemistry has led her to create new, incredibly absorbent chemicals that could do both these jobs and much more.

It’s all to do with surface area. Working in California and in Sydney she has constructed crystals that are full of minute holes. One teaspoon of the most effective of her chemicals has the surface area of a rugby field. What’s more, the size and shape of the pores can be customised using light. So she believes she can create molecular sponges that will mop up carbon dioxide, hydrogen, or in theory almost any gas – and then release it on cue. Continue reading Mopping up gases

Fighting back against malaria

Rowena Martin

The Australian National University, Canberra/The University of Melbourne

Rowena Martin, The Australian National University, Canberra/The University of Melbourne (credit: L’Oréal Australia/sdpmedia.com.au)
Rowena Martin, The Australian National University, Canberra/The University of Melbourne (credit: L’Oréal Australia/sdpmedia.com.au)

In the 1950s it seemed as if medical science was winning the fight against malaria with the help of the ‘wonder drug’ chloroquine. Over the past half century the drug has saved hundreds of millions of lives.

But now the parasite that causes malaria has fought back. Chloroquine-resistant malaria has become common in developing countries. Rowena Martin is working to understand what happened, and to develop new ways of treating malaria. Continue reading Fighting back against malaria

How does breast cancer start?

Marie-Liesse Asselin-Labat

Walter and Eliza Hall Institute of Medical Research

Most women in Australia who have breast cancer recover.  But many then relapse years later.

Rowena Martin, The Australian National University, Canberra/The University of Melbourne (credit: L’Oréal Australia/sdpmedia.com.au)
Rowena Martin, The Australian National University, Canberra/The University of Melbourne (credit: L’Oréal Australia/sdpmedia.com.au)

Marie-Liesse Asselin-Labat wants to know why.  If she can solve this mystery, her work will open up opportunities for new drugs and treatments. Her achievements to date suggest that she is well placed to succeed.

In 2006 she was part of the Walter and Eliza Hall Institute of Medical Research team that received global attention for its discovery of breast stem cells – a significant step in understanding how breast cancer starts. Marie-Liesse built on this finding with a series of papers exploring how these cells develop and are influenced by oestrogen and other steroids. Continue reading How does breast cancer start?

No moving parts – a new kind of radio telescope

Murchison Widefield Array
The Murchison Widefield Array is one of the first telescopes with no moving parts. Credit: David Herne, ICRAR

Far outback in Western Australia, at the Murchison Radio Astronomy Observatory located on Boolardy Station, 315 km north-east of Geraldton, 32 tiles each carrying 16 dipole antennas have begun to collect scientific data on the Sun. At the same time they are providing engineering information to be used to extend the facility to a much bigger array of 512 tiles – the Murchison Widefield Array (MWA).

Continue reading No moving parts – a new kind of radio telescope

Australia’s new reactor opens

The OPAL reactor and new neutron beam facility, managed by the Australian Nuclear Science and Technology Organisation (ANSTO) in Sydney’s south, officially opens on Wednesday 18 April 2007.

Costing $400 million to build, the reactor was described by ANSTO’s Executive Director, Dr. Ian Smith as “the jewel in the crown” of Australian nuclear research.

Continue reading Australia’s new reactor opens

The kangaroo genome – marsupials filling the gap

Analysing the genomes of Australia’s iconic marsupials will provide insight into how they turn off and on the development of the early embryo; give birth to very underdeveloped young, and why marsupial milk changes radically over the months of lactation.

This knowledge could lead scientists to new treatments for premature births, better milk production in cows, as well as novel antibiotics. Marsupials fill an evolutionary gap between the distantly related birds/reptiles and the more closely related placental mammals (such as humans and cows).

Continue reading The kangaroo genome – marsupials filling the gap

Ocean acidification threatens marine ecosystems

Ocean acidification, caused by increasing amounts of atmospheric carbon dioxide dissolving in the ocean, poses a serious threat to marine ecosystems.

Increasing acidity affects the ability of some planktonic organisms to form shells, and is expected to change the species composition of plankton, with flow-on effects to higher levels of the food web.

Continue reading Ocean acidification threatens marine ecosystems

Master switch turns plant sex life on and off

University of Melbourne researchers have isolated a genetic ‘switch’ that can be turned on or off to alter the development of sex cells in plants.

The discovery brings understanding of fertilisation in plants to a new level, and is an important step towards growing greater amounts of food through increased fertilisation of crop plants. Professors Mohan Singh and Prem Bhalla, who head the University’s Plant Molecular Biology and Biotechnology Laboratory in the Faculty of Land and Food Resources, analysed the genetic makeup of white lilies and other flowering plants to identify a germline-restrictive silencing factor (GRSF).

Continue reading Master switch turns plant sex life on and off

Venom from the sea cures human pain

The University of Melbourne’s Departments of Biochemistry and Molecular Biology, and Pharmacology have over recent years identified cone shell venom as a potential treatment for chronic pain in humans.

Researchers continue to develop the research into a commercialised product. One of the venom peptides identified is currently in phase two of clinical trials.

Continue reading Venom from the sea cures human pain