Modern airplanes use up to half their fuel to overcome the drag caused by turbulence at the surface of an airplane.
In 2010, Professor Ivan Marusic’s team of engineers at the University of Melbourne became the first in the world to predict and model the behaviour of the eddies that cause this drag—known as boundary layer turbulence. And now they are trying to control them.
“Even a five per cent reduction could save billions of dollars, and millions of tonnes of carbon dioxide,” says Ivan, “which is a big deal to aircraft operators like Qantas.”
Airplane fuel consumption, shipping costs, climate change, engine noise, blue green algae spread, windfarm efficiency, and the speed of Olympic rowing boats could all change dramatically if scientists can crack the 150-year-old mystery of boundary layer turbulence.
And that’s what University of Melbourne engineers are hoping to achieve with a supercomputer model that can do 3,000 years’ research in one year, a purpose built wind tunnel, and a new air-sea interaction facility.