Tag Archives: Feature

How reprogramming cells turns back time

For the past decade scientists have been able to reprogram skin cells, nasal cells and other mature cells to become pluripotent stem cells that can turn into any cell type in the human body. How it works is only starting to become clear.

Teams led by Professors Ryan Lister at the University of Western Australia, Jose Polo at Monash University and Ernst Wolvetang at The University of Queensland are working together to understand how this process occurs, whether all cell types follow the same path to becoming pluripotent cells, and if this impacts their ability to mimic disease in the laboratory.

Through a series of collaborations over the last ten years the scientists have uncovered a number of stem cell secrets, opening the door for more targeted research and, ultimately, treatments for diseases. Continue reading How reprogramming cells turns back time

Building tools for brain repair

Professor James Bourne and his team are laying the groundwork for using stem cell transplants to treat brain trauma with the discovery of an anti-scarring agent and new biomaterials to support transplanted cells.

“What we’re doing is a prelude to direct stem cell research. We hope to give potential stem cell therapies for brain trauma the best chance of success,” James says.

He and his team at the Australian Regenerative Medicine Institute at Monash University are studying nonhuman primates to understand how to create the best environments for repair after brain injury. Continue reading Building tools for brain repair

“Who will help me?”

People suffering from serious illnesses are turning to unproven and risky stem cell therapies in growing numbers. Researchers are trying to understand why—and how to provide better information and support.

Stem cells have been saving lives for decades, largely through bone marrow and cord blood transplants treating leukaemia and other blood diseases. Unproven treatments are booming, however, with clinics in Australia and around the world spruiking cures for conditions from osteoarthritis and MS to dementia and diabetes.

Associate Professor Megan Munsie and her colleagues in Stem Cells Australia’s Engagement, Ethics and Policy Program have heard many tales of patients spending thousands of dollars on treatments that often have no benefit and may be harmful or even deadly. Continue reading “Who will help me?”

Mini-kidneys tell two sides of a genetic story

Gene editing technology combined with stem cells provides a powerful new way to study genetic kidney diseases and their treatments.

Melbourne researchers have used mini-kidney ‘organoids’ grown in the lab to unravel the mystery of why Mainzer-Saldino syndrome, a rare disease involving a single defective gene, causes life-threatening kidney damage. In doing so, they’ve proven an approach that can be used to study a whole range of other genetic kidney diseases. Continue reading Mini-kidneys tell two sides of a genetic story

Wheat that’s good for guts

A new kind of wheat high in resistant starch can improve intestinal health

Bowel cancer is the world’s third most common cancer. A diet that includes more resistant starch, a kind of fibre that feeds good bacteria in the large intestine, can make it less common. Resistant starch helps improve gut health and reduces the risk of conditions such as diabetes, obesity, heart disease and cancer.

Since 2006, CSIRO scientists have been working in a joint venture with French company Limagrain Céréales Ingrédients and the Grains Research and Development Corporation to develop wheat with more resistant starch. Continue reading Wheat that’s good for guts

Reef rescue

French and Australian scientists are working together to understand how climate change is affecting reef sharks in French Polynesia, why corals in New Caledonia can survive extremes of temperature and acidity, and what fish markets mean for reef health.

Baby sharks

On Mo’orea in French Polynesia, Dr Jodie Rummer leads a project studying baby sharks to see how they will cope with climate change.

“Healthy reefs need healthy predators,” Jodie says. “And healthy predators need healthy reefs.” Continue reading Reef rescue

Quantum computing in silicon

A French-Australian collaboration is setting out to make silicon quantum computing a practical reality.

“I’m excited by our technology because it has the potential to change the world,” says Professor Andrew Dzurak of the University of New South Wales, the quantum computing expert who leads the Australian side of the partnership.

Andrew and his colleagues hope that their work will enable computing capabilities that are out of reach today and perhaps also result in the first universal quantum computer. Continue reading Quantum computing in silicon

Printing in metal

Australia’s pioneering 3D metal printing technology is now at work in Toulouse, printing components for the French aerospace company, Safran Power Units.

3D printing has the potential to transform manufacturing, allowing rapid prototyping of components, and the creation of lighter and more efficient components that would be impossible to make using traditional casting technologies. But there are many challenges to overcome to ensure that the components meet the intense engineering and regulatory requirements of the aerospace industry. Continue reading Printing in metal

What the universe is made of

The massive team that helped discover the Higgs boson is now hunting more exotic particles, including dark matter.

The ATLAS collaboration involves more than 3,000 physicists from around the world. In 2012, results from ATLAS were vital to the discovery of the Higgs boson, the particle that gives mass to everything in the Universe.

The 7000-tonne ATLAS detector at the Large Hadron Collider on the border of France and Switzerland tracks up to a billion collisions between high-energy protons each second. French and Australian physicists are at the forefront of efforts to decipher this torrent of data. Continue reading What the universe is made of

A polariton filter turns ordinary laser light into quantum light

An international team of researchers led out of Macquarie University has demonstrated a new approach for converting ordinary laser light into genuine quantum light.

Their approach uses nanometre-thick films made of gallium arsenide, which is a semiconductor material widely used in solar cells. They sandwich the thin films between two mirrors to manipulate the incoming photons.

The photons interact with electron-hole pairs in the semiconductor, forming new chimeric particles called polaritons that carry properties from both the photons and the electron-hole pairs. The polaritons decay after a few picoseconds, and the photons they release exhibit distinct quantum signatures.

The teams’ research was published overnight in the journal Nature Materials.

Continue reading A polariton filter turns ordinary laser light into quantum light