Spinning galaxies reveal missing matter

PHOTO: DARK MATTER DOMINATES GALAXIES AND GROUPS OF GALAXIES, YET ITS IDENTITY REMAINS UNKNOWN. CREDIT: DAVID MALIN, AUSTRALIAN ASTRONOMICAL OBSERVATORY.
PHOTO: DARK MATTER DOMINATES GALAXIES AND GROUPS OF GALAXIES, YET ITS IDENTITY REMAINS UNKNOWN. CREDIT: DAVID MALIN, AUSTRALIAN ASTRONOMICAL OBSERVATORY.

Australian astronomers have long been contributing to our understanding of a strange cosmological phenomenon—the Universe’s missing matter.

In the early 1970s, Ken Freeman of the Australian National University (ANU) determined that spiral galaxies must contain more matter than we can see. He postulated that dark matter—an invisible material first proposed 40 years earlier—must make up at least half the mass of these galaxies. Now, patches of dark matter are thought to be scattered across the Universe, playing a major role in holding galaxies and groups of galaxies together. Continue reading Spinning galaxies reveal missing matter

Australian scientists elected to Royal Society

Four of Australia’s most accomplished scientists have been elected to the oldest scientific academy in continuous existence, the Royal Society of London.

PROF IAN FRAZER LAUNCHES THE CERVICAL CANCER VACCINE GARDASIL. CREDIT: UNIVERSITY OF QUEENSLAND

Prof Ian Frazer, Prof Alan Cowman, Prof Mark Randolph and Dr Patrick Tam join 40 other scientists to be elected to the Royal Society in 2011, which celebrated its 350th anniversary last year.

Continue reading Australian scientists elected to Royal Society

Fighting back against malaria

Some of the biochemical tricks the malaria parasite uses to become resistant have been unravelled thanks to a series of discoveries by Dr Rowena Martin and her colleagues at the Australian National University.

She is using those insights to give a new lease of life to chloroquine, the wonder drug against malaria first discovered in the 1950s.

For more than half a century chloroquine saved hundreds of millions of lives, but now chloroquine-resistant malaria strains have become common in developing countries.

Rowena is working to understand what happened. The single-celled malaria parasite enters our bodies when we are bitten by an infected mosquito.

It eventually invades and plunders our red blood cells, consuming the haemoglobin contained within.

The digestion of haemoglobin, which takes place in the parasite’s stomach compartment, releases the iron-containing, nonprotein component, haem.

Free haem is toxic to the parasite, which responds by converting it to a harmless crystal. Chloroquine works by blocking the formation of these crystals.

Ten years ago researchers discovered that just a few small changes in a protein PfCRT were enough to give the parasite resistance to chloroquine. But they did not know what the changes did.

Rowena developed a system to study PfCRT in frog eggs—allowing her to examine it in isolation and in detail.

“We found that it moves chloroquine out of the parasite’s stomach compartment so that the drug can’t accumulate at its site of action.” For her achievements to date, in 2010 Rowena won a $20,000 L’Oréal Australia For Women in Science Fellowship.

Photo: Rowena Martin, the Australian National University, Canberra/The University of Melbourne. Credit: L’oréal Australia/SDP media.

Research School of Biology, The Australian National University, Rowena Martin, Tel: +61 2 6125 8589, Rowena.Martin@anu.edu.au, www.scienceinpublic.com.au/loreal

Fighting back against malaria

Rowena Martin

The Australian National University, Canberra/The University of Melbourne

Rowena Martin, The Australian National University, Canberra/The University of Melbourne (credit: L’Oréal Australia/sdpmedia.com.au)
Rowena Martin, The Australian National University, Canberra/The University of Melbourne (credit: L’Oréal Australia/sdpmedia.com.au)

In the 1950s it seemed as if medical science was winning the fight against malaria with the help of the ‘wonder drug’ chloroquine. Over the past half century the drug has saved hundreds of millions of lives.

But now the parasite that causes malaria has fought back. Chloroquine-resistant malaria has become common in developing countries. Rowena Martin is working to understand what happened, and to develop new ways of treating malaria. Continue reading Fighting back against malaria