Understanding and responding to changing climate

ANU’s Chris Fulton measuring reef fish at Lizard Island. Credit: Neal Cantin
ANU’s Chris Fulton measuring reef fish at Lizard Island. Credit: Neal Cantin

From the poles to the tropics, researchers from Australia and the US are working together to watch and understand our changing natural world. America’s constellation of earth observation satellites plays a critical role in monitoring Australia’s changing climate and land use. During bushfire, flood and cyclone emergencies the information they provide is critical to Australia’s emergency response. The air sampled at remote Cape Grim on Tasmania’s northwest coast and Australia’s ice core research are two examples of Australia’s contribution to NASA and the US National Oceanic and Atmospheric Administration (NOAA) efforts to understand and predict the planet’s changing climate. Australia and the US both encompass a huge range of terrestrial and marine ecosystems. Australia’s experiences in dealing with fire, drought and natural disasters are helping to give US researchers a different perspective on some of the challenges of America’s changing climate and environment.

Remote sensing in natural disasters

Emergency response managers are able to track the course of natural disasters such as fires, floods, earthquakes and storms and plan with increased accuracy thanks to software developed by Associate Professor Linlin Ge and his team at the University of New South Wales in Sydney. The software allows data from interferometric synthesis aperture radar (INSAR) satellites to be pulled together rapidly and automatically to generate high-resolution maps. The maps reveal ground movements, and predict likely damage to vital infrastructure such as buildings, roads, railways and bridges.

The team’s work has led to the establishment of an international network of national remote sensing agencies that collaborate in times of emergency management. The network began spontaneously in 2008 when Associate Professor Ge and his team, confronted by the enormity of the Sichuan earthquake in China, helped local rescue workers by providing satellite images constructed from Japanese data.

Cape Grim’s clean air—monitoring global climate change

Australia provides baseline climate data to the rest of the world through its monitoring station at Cape Grim at the extreme northwest tip of Tasmania. As well as monitoring carbon dioxide, methane and a range of atmospheric trace gases, scientists at Cape Grim measure concentrations of natural and pollutant particles. Because of Cape Grim’s remoteness from population centers (Argentina is the only landmass west of the Cape), the collected data represents as close as scientists can measure to a global average. The monitoring station is managed jointly by Australia’s Bureau of Meteorology and CSIRO.

Keeping a weather eye out

Antarctic research and resupply Ship Aurora Australis. Credit: Natalia Galin
Antarctic research and resupply Ship Aurora Australis. Credit: Natalia Galin

In addition, CSIRO has made a long-term contribution to improved climate prediction through monitoring the Southern Ocean since 1994. The world’s largest current, the Antarctic Circumpolar Current, flows around the Southern Ocean connecting the three major ocean basins—Pacific, Indian and Atlantic—redistributing heat, affecting temperature and rainfall, and making a huge impact on the world’s climate.

Through agreements with NOAA, NASA, and the Scripps Institution of Oceanography in San Diego, a ground station in Hobart in the southern island state of Tasmania, operated by the Australian Centre for Remote Sensing, has been downloading climate-relevant data from passing US polar orbit satellites.

One thousand new species found—understanding coral reefs

In the tropics, researchers at the Australian Institute of Marine Science (AIMS) are working with counterparts in the US to discover and document life on coral reefs and monitor the impact of climate change. AIMS, NOAA and the Smithsonian Institution lead the three nodes of CReefs, the coral reef component of the Census of Marine Life. CReefs aims to discover and explain the diversity, distribution, and abundance of life in coral reef ecosystems, and improve access to and unify this information. Already, more than 1,000 previously undocumented species have been discovered on Australia’s Great Barrier Reef, along the east coast, and Ningaloo Reef, off the west coast, as part of the project.

Fixing the plumbing—water conservation

Along with susceptibility to forest fires, large areas of Australia and the US also are prone to drought and water shortages and the two countries have long collaborated on water research. The recent development of a Memorandum of Understanding on Environmental Water Cooperation between the two countries tackles an interesting consequence of water conservation. As the water efficiency of plumbing fixtures increases, there has been a significant reduction in the flows moving through the sewer system, increasing the concentration of waste and creating challenges for existing processing facilities. The memorandum covers joint research to be conducted in this area.

Elvis to the rescue

Experimental Bushfire Set In Mccorkhill, Western Australia. Credit: CSIRO.
Experimental Bushfire Set In Mccorkhill, Western Australia. Credit: CSIRO.

Each year, the ‘Elvis’ air-crane and other giant firefighting helicopters migrate south from America to Australia, where they have saved many Australian lives and properties. American fire fighters and fire investigators have also been helping on the ground, especially following Victoria’s Black Saturday bushfires in 2009. And the cooperation works both ways, with Australia contributing both firefighting expertise and research support in response to recent Californian wildfires. A meeting organized by Australia’s Bushfire Cooperative Research Centre in June 2010 has helped to broaden and formalize this collaboration, as researchers and fire managers from the US, New Zealand and Australia came together to share their knowledge and plan future collaborative work.

People

Fishy business

Dr Beth Fulton, based at CSIRO Marine and Atmospheric Research in Hobart and a former winner of the Prime Minister’s Life Scientist of the year award, is a world leader in modeling marine ecosystems. Dr Fulton works regularly with researchers from NOAA and US universities. Together they have developed management models for marine life along much of the west and east coasts of continental US, and now are studying the Gulf of Mexico and Hawaii.

Snow complications

The US and Australia maintain significant collaborative research programs in Antarctica, drilling ice cores that provide a detailed historical record of climate, and measuring the extent and thickness of the sea-ice, which has a major impact on climate. Fulbright scholar and University of Tasmania PhD student Ms Natalia Galin has been collaborating with researchers at the University of Kansas to measure snow thickness from a helicopter. An error in snow measurements above the water can be magnified by eight or nine times in estimating ice thickness below the water. However, the team’s specialized radar equipment provides accurate readings of snow thickness on sea ice—information that will be used to calibrate satellite remote sensing data.

The long-term view

An Australian paleontologist, who uncovered the earliest fossil of live birth in fishes, a key to our understanding of reproduction in animals with backbones, is now Vice-President Research and Collections at the Natural History Museum of Los Angeles County. Dr John Long was formerly Head of Sciences at Museum Victoria.

This is an part of a series of eight factsheets exploring US-Australian collaboration and outlining some of the ways that Australian science is contributing to America’s society and economy. You can download all of the factsheets as one PDF here.
  1. Overview: Innovation today means jobs and prosperity tomorrow. (Download PDF)
  2. Delivering sustainable agriculture and biosecurity. (Download PDF)
  3. Slivers of sun: clean energy and smarter mining. (Download PDF)
  4. Science collaboration improves health. (Download PDF)
  5. Understanding and responding to changing climate. (Download PDF)
  6. Traveling at Mach 5: Defense and materials science in action. (Download PDF)
  7. Searching the southern sky, and unchaining the internet. (Download PDF)
  8. The Australian science and technology system. (Download PDF)

Delivering sustainable agriculture and biosecurity

PhD student Elena Virtue at the Australian Animal Health Laboratory. Credit: CSIRO
PhD student Elena Virtue at the Australian Animal Health Laboratory. Credit: CSIRO

Across America’s Deep South, farmers are growing Australian-derived cotton and, as a result, slashing their use of pesticides. It’s part of a global drive to increase production and sustainability involving Australian and American researchers, and agritech giants such as Monsanto, Dow Chemical and DuPont. All these companies have agreements with Australian researchers helping to develop the next generation of smart crops. The underlying technologies are being applied to dozens of crops and even to medical research.

Meanwhile, US and Australian scientists are working side by side to enhance biosecurity—fighting deadly new killers such as Nipah virus, ancient plagues such as malaria, and emerging threats to agriculture and the environment. American scientists working in Brisbane are testing biological controls to fight against invasive plants that threaten the Florida Everglades, while NASA technology is helping Australia cope with its locust plagues and teams across both countries are trying to understand what is killing frogs worldwide.

Continue reading Delivering sustainable agriculture and biosecurity

US-Australia collaboration: partners in innovation, transforming lives and economies together

Partners in innovation

In 2017 Science in Public produced a series of factsheets for the Australian Embassy in Washington DC, to highlight some of the US-Australia innovations transforming both countries.

You can view the factsheets online by clicking on the links below or by downloading the individual PDF files.

  1. Protecting our crops—partners in food security (Download PDF)
  2. Protecting phones, robots and governments—partners in cybersecurity  (Download PDF)
  3.  From the ocean floor to batteries—partners in energy (Download PDF)
  4. Cars, planes…partners in advanced manufacturing (Download PDF)
  5. Eyes, hearts, bionic spines—partners in new health technologies (Download PDF)
  6. Healthier trucks and clean air underground—partners in mining technologies (Download PDF)

Transforming lives and economies together

Cochlear implant pioneer Professor Graeme Clark with recipient Credit: Cochlear Limited
Cochlear implant pioneer Professor Graeme Clark with recipient. Credit: Cochlear Limited

The United States is the world’s undisputed innovation leader, but Australian ingenuity is helping to meet America’s biggest challenges and improve the lives of its citizens every day.

  • Across America, deaf children are hearing for the first time thanks to a cochlear implant or bionic ear invented and manufactured in Australia.
  • Young women have access to vaccines that prevent cervical cancer, because of the work of Australian medical researchers at the University of Queensland.
  • America’s largest warships use Nulka for missile defence. It’s a little Aussie rocket that pretends it’s a ship.
  • In Pittsburgh, they’re making an ‘ultra-battery’ for storage of renewable energy, developed at Australia’s national science agency, CSIRO. The technology will also be used in hybrid cars.
  • Texan cotton farmers are growing crops that use less water, less pesticide and produce better cotton, with the help of CSIRO-derived plant varieties.
  • In Nebraska, Cold War technology, adapted by Australian mining company BHP Billiton, is being used to find rare earth mineral deposits from the air.
  • In Hawaii, one of the world’s largest optical telescopes uses an instrument built at ANU to analyze infrared light.
  • And millions of people are connecting to the internet wirelessly, thanks to discoveries by CSIRO astronomer-engineers.

In February 2011, Australia and America’s science leaders met in Washington DC to explore  closer science collaboration.

Science in Public produced a series of factsheets for the Australian Government showcasing some of the successes of past and present US-Australian collaboration in science, and signaling future collaboration.

You can view the factsheets online by clicking on the links below or by downloading the individual PDF files. To download all the factsheets as one PDF click here.

  1. Overview: Innovation today means jobs and prosperity tomorrow. (Download PDF)
  2. Delivering sustainable agriculture and biosecurity. (Download PDF)
  3. Slivers of sun: clean energy and smarter mining. (Download PDF)
  4. Science collaboration improves health. (Download PDF)
  5. Understanding and responding to changing climate. (Download PDF)
  6. Traveling at Mach 5: Defense and materials science in action. (Download PDF)
  7. Searching the southern sky, and unchaining the internet. (Download PDF)
  8. The Australian science and technology system. (Download PDF)

Slivers of sun: clean energy and smarter mining

Klaus Weber (left) and Andrew Blakers (right) inventors of sliver solar cells. Credit: ANU
Klaus Weber (left) and Andrew Blakers (right) inventors of sliver solar cells. Credit: ANU

Australia’s investments in energy and resource research are helping the world go green, and creating jobs in America’s heartlands.

The world’s largest manufacturer of photovoltaic cells depends on Australian technology, and US companies are working on turning Australian ideas into practical electric cars and sustainable plant-based fuels.

Over the last 20 years Australia has been able to meet the rapidly growing demand for minerals and energy in China, India and other Asian countries through a culture of innovation that has over the past 150 years changed the very shape of mining.

Two recent innovations—one sourced from US military technology—are assisting in the search for new mineral and energy reserves in America and across the world.

Slivers of the Sun

Australia and the US have a long history as world leaders in solar research. In fact, researchers from the University of New South Wales (UNSW) in Sydney, the National Renewable Energy Laboratory in Colorado and Emcore Corporation in New Mexico have created the world’s most efficient solar cell combination. And the world’s largest photovoltaic cell manufacturer, Suntech Power of China, as well as companies in Europe, use Australian technology to develop their businesses.

Now, the new technologies are creating jobs in America. In June 2010, Transform Solar—a joint venture between US company Micron Technology and Australia’s Origin Energy—announced it will reopen a plant in Boise, Idaho to make efficient, new, sliver solar cells. As a consequence, the city looks like regaining many of the 3,000 jobs it lost when the factory closed.

Sliver cells were invented at the Australian National University (ANU) by Dr Klaus Weber and Professor Andrew Blakers. A single flat wafer of silicon is cut vertically into thousands of slivers. These are rotated 90 degrees and laid side by side to create a solar cell. The much larger and thinner active surface generates current on both sides, and the result is more power for about the same cost.

UltraBattery drives cars further

Ultrabattery at work. Credit: CSIRO
Ultrabattery at work. Credit: CSIRO

The UltraBattery, invented by CSIRO and launched in 2008, has brought the conventional car battery into the era of low-emission transport and renewable energy storage. By combining lead-acid technology with a supercapacitor, the UltraBattery not only charges and discharges rapidly, but lasts four to five times longer than an ordinary battery.

It also costs about 70 per cent less to produce than the nickel-metal hydride batteries normally used in electric vehicles. These properties, while especially useful for electric vehicles with regenerative braking, also are excellent for capturing and storing electricity produced from intermittent renewable sources, such as solar and wind power. In 2009, as part of a package to accelerate the production of advanced battery technology for electric and hybrid vehicles, the East Penn Manufacturing Company was awarded US$32.5 million under the American Recovery and Reinvestment Act to produce the UltraBattery.

Growing aircraft fuels

Aircraft manufacturer Boeing and California biotech company Amyris have joined the Queensland Government, the University of Queensland, the airline Virgin Blue, and several other companies in exploring the possibilities of producing aviation fuel sustainably using green algae. The project is based on the work of Associate Professor Ben Hankamer from the University of Queensland’s Institute of Molecular Bioscience and his team, who have had great success in improving the efficiency of the process.

At the Queensland University of Technology, Syngenta Biotechnology Inc of North Carolina and Australian company Farmacule are using molecular technologies to develop efficient ways of producing the transport fuel and chemical feedstock bioethanol from the sugarcane residue known as ‘bagasse’. The process is complicated and involves employing a string of enzymes to break down cellulose. But if the researchers get it right, the applications will extend to plant resources far beyond the waste generated by the sugar industry.

Finding tomorrow’s mines from the air

Tucson copper mine. Credit: istockphoto
Tucson copper mine. Credit: istockphoto

In the 1990s, Australian resources company BHP recognized that a sensor that measured minute changes in gravity, and hence density of the Earth below, might be useful as a means of discovering potential ore bodies in remote areas.

In 1999, BHP obtained a license to adapt to mineral exploration technology that originally had been developed by Lockheed Martin for the US Navy to help submarines avoid seamounts. The airborne sensor, which BHP named Falcon, has been responsible for discovering new diamond pipes in northwest Canada, and has assisted in detecting iron, copper, gold and coal deposits elsewhere.

Magnetic squid

Another Australian technology already out in the marketplace makes use of superconducting quantum interference device or SQUID technology that can detect extremely small magnetic fields. Known as LANDTEM and developed by CSIRO, the sensor, a high-temperature superconductor that must be stored in liquid nitrogen, is sensitive enough to detect the difference between an ore body and overburden. In less than 10 years the technology, which cost just AU$4 million to develop, has been directly responsible for helping to unearth about AU$6 billion worth of previously undiscovered ore bodies.

Mining with bubbles

In the 19th century, miners at Broken Hill in far western New South Wales pioneered the use of bubbles to separate minerals from their ores. This ubiquitous technology was modernized in the 1980s with the creation of the Jameson Cell by Dr Graeme Jameson at the University of Newcastle and Mount Isa Mines. The Vigo and A.T. Massey coal companies in Indiana and West Virginia respectively are among hundreds of mines worldwide now using this system marketed by Xstrata Technologies.

Making virtual minerals

Researchers at the University of Sydney led by Professor Dietmar Müller are collaborating with colleagues at Caltech, the Scripps Institution of Oceanography and the University of Hawaii to develop a Virtual Geological Observatory. The facility will store data on rocks, processes and movements over geological time and use this information to simulate mineral formation. In future, this technology will help in the detection of mineral deposits underground.

New extraction technologies

Once a new mineral deposit has been found, the next challenge is to determine which minerals you can extract and at what cost. The Australian Nuclear Science and Technology Organisation (ANSTO) has for the past 30 years been helping mining companies assess and develop processes for uranium ores, extract rare earth metals, and remove radioactivity from ores. This work has contributed to mining projects around the world, including the US.

Mopping up gases

Dr Deanna D’alessandro. Credit: L’oreal/SDP media
Dr Deanna D’alessandro. Credit: L’oreal/SDP media

A bright young researcher in the area of carbon capture is Australian chemist Dr Deanna D’Alessandro. Dr D’Alessandro, who has returned to the University of Sydney as a postdoctoral research fellow after a postdoctoral fellowship at the University of California, Berkeley, has constructed crystals full of minute pores. One teaspoon of the most effective of her chemicals has the surface area of a football field. What’s more, the size and shape of the pores can be customized using light. So, she believes she can create molecular sponges that will mop up carbon dioxide, hydrogen, or almost any gas, and then release it on cue.

This is an part of a series of eight factsheets exploring US-Australian collaboration and outlining some of the ways that Australian science is contributing to America’s society and economy. You can download all of the factsheets as one PDF here.

  1. Overview: Innovation today means jobs and prosperity tomorrow. (Download PDF)
  2. Delivering sustainable agriculture and biosecurity. (Download PDF)
  3. Slivers of sun: clean energy and smarter mining. (Download PDF)
  4. Science collaboration improves health. (Download PDF)
  5. Understanding and responding to changing climate. (Download PDF)
  6. Traveling at Mach 5: Defense and materials science in action. (Download PDF)
  7. Searching the southern sky, and unchaining the internet. (Download PDF)
  8. The Australian science and technology system. (Download PDF)

Innovation today means jobs and prosperity tomorrow

Astronomer Naomi McClure Griffiths at Parkes. Credit: CSIRO
Astronomer Naomi McClure Griffiths at Parkes. Credit: CSIRO
  • A factory in Boise, Idaho, is re-opening to make a new kind of solar cell invented at the Australian National University (ANU).
  • In Pittsburgh, they’re already making an ‘ultra-battery’ for storage of renewable energy, developed at Australia’s national science agency, CSIRO. The technology will also be used in hybrid cars.
  • Texan cotton farmers are growing crops that use less water, less pesticide and produce better cotton, with the help of CSIRO-derived plant varieties.
  • In Nebraska, Cold War technology, adapted by Australian mining company BHP Billiton, is being used to find rare earth mineral deposits from the air.
  • In Hawaii, one of the world’s largest optical telescopes uses an instrument built at ANU to analyze infrared light.
  • Across America, deaf children are hearing for the first time thanks to a cochlear implant or bionic ear invented and manufactured in Australia.
  • Young women have access to vaccines that prevent cervical cancer, because of the work of an Australian medical researcher at the University of Queensland.
  • And millions of people are connecting to the internet wirelessly, thanks to discoveries by CSIRO astronomer-engineers.

These are just a few examples of the way Australian and US science and innovation are working together to build a healthier, sustainable and more connected future for the people of both nations.

“Australia and America’s shared vision of growth through innovation has in the past led to developments from the Nulka hovering decoy rocket which protects ships against incoming missiles, to improvements in IVF technology. It can generate not only jobs, but a better future for both countries.”

Continue reading Innovation today means jobs and prosperity tomorrow