Tag Archives: optics

Hearing voices is normal; lenses a thousandth of a hair-width; harnessing the Internet of Things; and more—Swinburne University of Technology

Researchers at Swinburne University of Technology are working on:

Continue reading Hearing voices is normal; lenses a thousandth of a hair-width; harnessing the Internet of Things; and more—Swinburne University of Technology

No more twinkle, junk and stars, now we know just where you are

Technology that ‘de-twinkles’ stars is being used to pinpoint manmade space junk and avoid devastating collisions like those dramatised in the movie Gravity.

Artist’s impression of the Giant Magellan Telescope with the laser guide beams of its adaptive optics system. Credit: GMTO Corporation

Australian company Electro Optic Systems, based on Mount Stromlo in Canberra, is using adaptive optics and pulsing lasers to locate detritus too small for conventional radar. Ultimately, the company hopes to use similar lasers to remove the debris from orbit.

Adaptive optics helps the pulsing lasers to cut through the Earth’s atmospheric turbulence, which distorts and scatters light, by using a second orange-coloured laser to illuminate sodium atoms in the upper atmosphere.

Continue reading No more twinkle, junk and stars, now we know just where you are

Fibre optics: from cables to colon health

A new fibre optic medical tool is revolutionising our understanding of serious but socially embarrassing digestive illnesses, such as constipation, diarrhoea and irritable bowel syndrome. Thanks to this device, medical scientists can see for the first time the coordinated, fine and complex muscular activity of the human digestive system in action.

FIBRE OPTIC TECHNNOLOGY IS HELPING JOHN ARKWRIGHT UNDERSTAND OUR DIGESTIVE FUNCTION. CREDIT: ISTOCKPHOTO

CSIRO optical physicist Dr John Arkwright, together with Dr Philip Dinning, of Flinders University, collected a 2011 Eureka Prize for their creation of the fibre optic catheter, which gleans information about digestive function by measuring pressure.
Continue reading Fibre optics: from cables to colon health

Bionic eye researchers take a shine to diamond

Electrodes made of diamond are helping Melbourne researchers build a better bionic eye.

David Garrett’s Melbourne team is designing diamond electrodes to replace light-sensing parts of the retina. Credit: David J. Garrett
David Garrett’s Melbourne team is designing diamond electrodes to replace light-sensing parts of the retina. Credit: David J. Garrett

Some types of blindness are caused by diseases where the light-sensing part of the retina is damaged, but the nerves that communicate with the brain are still healthy—for example, retinitis pigmentosa and age-related macular degeneration.

Dr David Garrett and his colleagues at the Melbourne Materials Institute at the University of Melbourne are using diamond to build electrodes that can replace the light-sensing function of the retina: they deliver an electrical signal to the eye via a light-sensing camera.

Continue reading Bionic eye researchers take a shine to diamond

Sifting sky data

THE GIANT MAGELLAN TELESCOPE. CREDIT: GIANT MAGELLAN TELESCOPE—GMTO CORPORATION.
The Giant Magellan Telescope may use Australian Starbugs technology when it begins operating in around 2018. Credit: Giant Magellan Telescope—GMTO Corporation

Imagine an extremely large optical telescope fitted with detectors that can selectively collect light from a particular section of the telescope’s focal plane. Using revolutionary robotic technology called Starbugs, the detector will reconfigure itself in real time to collect from any particular area of the image, and will feed the data into any analytical instrument.

That’s exactly what Matthew Colless and his team at the Australian Astronomical Observatory have in mind with the development of MANIFEST (the many-instrument fibre system)—which make use of the special photonic technologies developed by Joss Bland-Hawthorn and his team at the University of Sydney. Continue reading Sifting sky data

Bringing dark corners of the Universe to light

JOSS BLAND-HAWTHORN HOLDING A PHOTONIC LANTERN, A REVOLUTIONARY DEVICE TO ANALYSE THE LIGHT OF DISTANT STARS, INVENTED IN AUSTRALIA. CREDIT: CHRIS WALSH.
JOSS BLAND-HAWTHORN HOLDING A PHOTONIC LANTERN, A REVOLUTIONARY DEVICE TO ANALYSE THE LIGHT OF DISTANT STARS, INVENTED IN AUSTRALIA. CREDIT: CHRIS WALSH.

Using the Gemini South telescope in Chile, a team of astronomers led by Joss Bland-Hawthorn of the University of Sydney revealed the faint, outer regions of the galaxy called NGC 300, showing that the galaxy is at least twice the size as thought previously. The findings suggest that our own Milky Way galaxy could also be bigger than the textbooks say.

But Joss’s telescope observations are just a part of his contribution to astronomy. He is also helping to pioneer a new technology known as astrophotonics, which uses optical systems to improve our understanding of the Universe. Continue reading Bringing dark corners of the Universe to light

SkyMapper’s 268-megapixel camera

On a mountaintop in northern New South Wales sits a new telescope equipped with Australia’s largest digital camera. The Australian National University’s (ANU) SkyMapper facility has been established at Siding Spring Observatory to conduct the most comprehensive optical survey yet of the southern sky.

Fully automated, the telescope is measuring the shape, brightness and spectral type of over a billion stars and galaxies, down to one million times fainter than the eye can see.

SKYMAPPER AT SIDING SPRING, NORTHERN NEW SOUTH WALES. CREDIT: AUSTRALIAN NATIONAL UNIVERSITY.

Continue reading SkyMapper’s 268-megapixel camera

Australian company brings the Universe within range

THIS SATELLITE LASER RANGING STATION MANAGED BY GEOSCIENCE AUSTRALIA AT MOUNT STROMLO OBSERVATORY NEAR CANBERRA WAS BUILT AND IS OPERATED BY EOS. CREDIT: CRAIG ELLIS.
THIS SATELLITE LASER RANGING STATION MANAGED BY GEOSCIENCE AUSTRALIA AT MOUNT STROMLO OBSERVATORY NEAR CANBERRA WAS BUILT AND IS OPERATED BY EOS. CREDIT: CRAIG ELLIS.

An Australian company, Electro-Optic Systems (EOS), is one of the biggest developers of large, high-precision, optical research telescopes in the world. In fact, EOS has designed, built and installed the SkyMapper telescope and its enclosure at Siding Spring Observatory in New South Wales.

The headquarters of EOS is at the Mt Stromlo Observatory near Canberra, but its reach is international. Equipment the company has installed include the University of Tokyo’s two-metre telescope at Mount Haleakala, Hawai’i, a two-metre telescope in the Himalayas for the Indian Institute of Astrophysics, and the 2.4 ­metre Advanced Planet Finder (APF) at the University of California’s Lick Observatory. Continue reading Australian company brings the Universe within range

Detecting aircraft fatigue

TanyaMonro_300x180The only way to find out whether the internal structures of an aircraft are corroded is to pull the plane apart and look. But new nanotechnology-based techniques being developed by Prof. Tanya Monro, Director of University of Adelaide’s Centre of Expertise in Photonics, in collaboration with the Defence Science and Technology Organisation, could make costly visual inspection in preventive aircraft maintenance a thing of the past.

Continue reading Detecting aircraft fatigue