Tag Archives: methane

X-rays for gold

China and Australia are the world’s two largest producers of gold. So, it’s fitting that a device combining Australian and Chinese research, and capabilities in high-tech manufacturing, is set to shake up the industry.

Ore processors need to know how much gold is in their raw material to get the most out of it. The current industry standard for testing ore is the fire assay, an elaborate and time-consuming process that requires temperatures over 1000 degrees and toxic chemicals such as lead. It also takes at least 8 hours to complete.

Continue reading X-rays for gold

Add colour for 10 times more gas

2
Matthew Lee (left) and Mike (right) injecting nutrients into a coal seam 80 metres below ground. Credit: Sabrina Beckmann

Adding a simple textile dye can increase the methane yield of coal seam gas wells by a factor of 10, researchers from the University of New South Wales (UNSW) have found.

The discovery could breathe new life into old, exhausted wells, reducing the need for new ones.

It could also improve the economics of renewable biogas energy production.

Continue reading Add colour for 10 times more gas

Fresh Science 2010

Each year we identify early-career scientists with a discovery and bring them to Melbourne for a communication boot camp. Here are some of their stories.

More at www.freshscience.org.au

Print your own lasers, lights and TV screens

Print your own lasers, lights and TV screens
Jacek Jasieniak sprinkling quantum dots. Credit: Jacek Jasieniak

Imagine printing your own room lighting, lasers, or solar cells from inks you buy at the local newsagent. Jacek Jasieniak and colleagues at CSIRO, the University of Melbourne and the University of Padua in Italy, have developed liquid inks based on quantum dots that can be used to print such devices and in the first demonstration of their technology have produced tiny lasers. Quantum dots are made of semiconductor material grown as nanometre-sized crystals, around a millionth of a millimetre in diameter. The laser colour they produce can be selectively tuned by varying their size.

Cling wrap captures CO2
Colin Scholes operates a test rig for his carbon capture membrane. Credit: CO2 CRC

Cling wrap captures CO2

High tech cling wraps that ‘sieve out’ carbon dioxide from waste gases can help save the world, says Melbourne University chemical engineer, Colin Scholes who developed the technology. The membranes can be fitted to existing chimneys where they capture CO2 for removal and storage. Not only are the new membranes efficient, they are also relatively cheap to produce. They are already being tested on brown coal power stations in Victoria’s La Trobe Valley, Colin says. “We are hoping these membranes will cut emissions from power stations by up to 90 per cent.”

Continue reading Fresh Science 2010