Putting Einstein to the ultimate test

CSIRO’s Parkes telescope records pulsar signals to try to detect gravitational waves. Credit: David McClenaghan / CSIRO

Einstein’s general theory of relativity predicts them, and they could be scattered throughout the Universe. But so far, gravitational waves— ‘ripples’ in the fabric of space and time—have never been detected. Several Australian teams of astronomers are trying to catch the first signs of one.

Continue reading Putting Einstein to the ultimate test

Japanese spacecraft calls Australia home


On 13 June 2010, a Japanese spacecraft bearing pieces of another world parachuted down to Australian soil after a seven-year-long journey through deep space.

During its journey, the spacecraft, called Hayabusa, encountered the 530-metre-long asteroid called Itokawa in November 2005, and briefly landed on it. The Japanese Aerospace Exploration Agency (JAXA) designed Hayabusa to collect samples of the asteroid’s surface. Hayabusa then landed at the Department of Defence’s remote Woomera Prohibited Area in the South Australian desert. Fifty years ago, Woomera was one of the most active rocket launch sites in the world. It is still the largest land-based test range on the planet. Continue reading Japanese spacecraft calls Australia home

Spot the nutrients

Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.
Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.

South Australian researchers are using the Australian Synchrotron in their work on how to increase levels of iron and other micronutrients in staple grains such as rice and barley. The intense X-rays of the synchrotron can pinpoint where in the grain those micronutrients are found.

One third of the world’s population suffers from iron deficiency. One of the reasons for this is that more than three-quarters of the iron in rice is lost when the outer layers of the grain are removed during milling.

Enzo Lombi and Erica Donner from the Centre for Environmental Risk Assessment and Remediation at the University of South Australia are using the x-ray fluorescence microscopy (XFM) beam to probe grains of rice, barley and other staple grains that have been designed to boost levels of key micronutrients like iron.

The researchers use the intense synchrotron light to produce images showing concentrations of elements, like iron, copper, zinc and selenium.

One of the new plants they are studying is a strain of rice that has multiple copies of the gene for nicotianamine, which is involved in the long-distance transport of iron. The idea is that more iron will be moved into the inner layers of the rice grain.

The technique used by Enzo and Erica is the only one sensitive enough to determine the chemical form of these elements at the low levels found in cereal grains. It will show how much of the iron will be available when it reaches the consumer.

Photo: Tri-colour map of: Fe (red), Cu (green) and Zn (blue) in a grain of barley.
Credit: Enzo Lombi

Centre for Environmental Risk Assessment and Remediation, Enzo Lombi, Tel: +61 8 830 26267, Enzo.Lombi@unisa.edu.au

OPAL reactor fingerprints Aboriginal ochre

A Flinders University chemist is using Australia’s OPAL research reactor at Lucas Heights in Sydney to investigate ancient Aboriginal Australian society.

Using the technique called neutron activation analysis, Dr Rachel Popelka-Filcoff can “geochemically fingerprint” Aboriginal ochre pigments from different locations, archaeological sites and artefacts.

Applying nuclear power to research
Rachel Popelka-Filcoff can trace the cultural use of ochre using Australia’s research reactor. Credit: Ashton Claridge, Flinders Media
As the geochemical composition of ochre varies with location, she can correlate each sample with its site of origin, gaining information on cultural practices, travel and exchange patterns, and the relationship of Aboriginal people to the landscape. “Ochre pigments are highly significant in Aboriginal culture,” says Rachel. “Cultural expression often requires a specific pigment. Applying ochre to an object such as a spear can transform both its colour and its cultural meaning.”

Dr Roman Dronov, also from Flinders, is using the reactor to study the formation of bacterial protein layers. He is applying what he finds to constructing a new type of biosensor based on these layers and porous silicon. These highly sensitive devices can rapidly detect trace amounts of molecules, such as environmental poisons and markers of disease—a great improvement on traditional analytical methods.
Continue reading OPAL reactor fingerprints Aboriginal ochre

Helping eyes to help themselves

Donor corneas conditioned with DNA before being transplanted into new eyes are already actively contributing to their own success in experimental animals such as sheep.

An Australian research group is making corneal transplant easier. Credit: iStockphoto
An Australian research group is making corneal transplant easier. Credit: iStockphoto
The DNA is inserted into the cells of the cornea after it has been harvested. Then, following implantation, it produces proteins that help overcome immunological rejection.

This is one of many strands of research aimed at increasing the success rates of corneal transplants and other eye disease treatments undertaken by Prof Keryn Williams at Flinders University.
Continue reading Helping eyes to help themselves

Computing with a single electron

Australian engineers and physicists have developed a ‘single electron reader’, one of the key building blocks needed to make a quantum computer.

Computing with a single electron
Andrew Dzurak (left), Andrea Morello and their colleagues have read the spin of a single electron. Credit: UNSW
Quantum computers will use the spin, or magnetic orientation, of individual electrons for their calculations. And, because of the quantum nature of electrons, quantum computers could be exponentially faster at certain tasks than traditional computers.

In order to employ electron spin, a quantum computer needs both a way of changing the spin state (writing information) and of measuring that change (reading information). Together these two form a quantum bit or qubit – the equivalent of the bit in a conventional computer.
Continue reading Computing with a single electron

Fresh Science 2010

Each year we identify early-career scientists with a discovery and bring them to Melbourne for a communication boot camp. Here are some of their stories.

More at www.freshscience.org.au

Print your own lasers, lights and TV screens

Print your own lasers, lights and TV screens
Jacek Jasieniak sprinkling quantum dots. Credit: Jacek Jasieniak

Imagine printing your own room lighting, lasers, or solar cells from inks you buy at the local newsagent. Jacek Jasieniak and colleagues at CSIRO, the University of Melbourne and the University of Padua in Italy, have developed liquid inks based on quantum dots that can be used to print such devices and in the first demonstration of their technology have produced tiny lasers. Quantum dots are made of semiconductor material grown as nanometre-sized crystals, around a millionth of a millimetre in diameter. The laser colour they produce can be selectively tuned by varying their size.

Cling wrap captures CO2
Colin Scholes operates a test rig for his carbon capture membrane. Credit: CO2 CRC

Cling wrap captures CO2

High tech cling wraps that ‘sieve out’ carbon dioxide from waste gases can help save the world, says Melbourne University chemical engineer, Colin Scholes who developed the technology. The membranes can be fitted to existing chimneys where they capture CO2 for removal and storage. Not only are the new membranes efficient, they are also relatively cheap to produce. They are already being tested on brown coal power stations in Victoria’s La Trobe Valley, Colin says. “We are hoping these membranes will cut emissions from power stations by up to 90 per cent.”

Continue reading Fresh Science 2010

Detecting aircraft fatigue

TanyaMonro_300x180The only way to find out whether the internal structures of an aircraft are corroded is to pull the plane apart and look. But new nanotechnology-based techniques being developed by Prof. Tanya Monro, Director of University of Adelaide’s Centre of Expertise in Photonics, in collaboration with the Defence Science and Technology Organisation, could make costly visual inspection in preventive aircraft maintenance a thing of the past.

Continue reading Detecting aircraft fatigue